Skip to main content
Log in

In Silico Prediction of Two Classes of Honeybee Genes with CpG Deficiency or CpG Enrichment and Sorting According to Gene Ontology Classes

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Two honeybee DNA methyltransferase genes have recently been identified and confirmed to be functional. The honeybee genes under regulation by DNA methylation may therefore be CpG deficient, due to natural deamination of methylated DNA. In this report, we show that <39% of the known honeybee genes are likely to be methylated on the basis of their low CpG obs/exp ratios. In contrast, orthologues of these genes in the fruitfly do not show CpG deficiency. Classes of function as determined by Gene Ontology were obtained for the honeybee genes with significantly low and high CpG obs/exp ratios. Overrepresented classes in the low CpG[obs/exp] genes are involved in transcription, translation, protein folding, protein localization, protein transportation, cell cycle, and DNA and RNA metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bestor TH (1990) DNA methylation: evolution of a bacterial immune function into a regulator to gene expression and genome structure in higher eukaryotes. Philos Trans R Soc Lond B 326:179–187

    Article  CAS  Google Scholar 

  • Bird AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8:1499–1504

    Article  PubMed  CAS  Google Scholar 

  • Blüthgen N, Brand K, Cajavec B, Swat M, Herzel H, Beule D (2005) Biological profiling of gene groups utilizing Gene Ontology. Genome Inform 16:106–115

    PubMed  Google Scholar 

  • Burge C, Campbell AM, Karlin S (1992) Over- and under-representation of short oligonucleotides in DNA sequences. Proc Natl Acad Sci USA 89:1358–1362

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Cooper DN, Youssoufian H (1988) The CpG dinucleotide and human genetic disease. Hum Genet 78:151–155

    Article  PubMed  CAS  Google Scholar 

  • Coulonder C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274:775–780

    Article  Google Scholar 

  • Duncan BK, Miller JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561

    Article  PubMed  CAS  Google Scholar 

  • Gowher H, Leismann O, Jeltsch A (2000) DNA of Drosophila melanogaster contains 5-methylcytosine. EMBO J 19:6918–6923

    Article  PubMed  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutrtional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Polak P, Arndt PF (2008) Transcription induces strand-specific mutations at the 5′ end of human genes. Genome Res 18:1216–1223

    Article  PubMed  CAS  Google Scholar 

  • Regev A, Lamb MJ, Jablonka E (1998) The role of DNA methylation in invertebrates: developmental regulation or genome defense? Mol Biol Evol 15:880–891

    CAS  Google Scholar 

  • Simmen MW, Leitgeb S, Charlton J, Jones SJM, Harris BR, Clark VH, Bird A (1999) Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283:1164–1167

    Article  PubMed  CAS  Google Scholar 

  • Singer J, Roberts-Ems J, Luthardt FW, Riggs FW (1979) Methylation of DNA in mouse early embryos, teratocarcinoma cells and adult tissues of mouse and rabbit. Nucleic Acids Res 7:2369–2385

    Article  PubMed  CAS  Google Scholar 

  • Suzuki MM, Kerr ARW, Sousa DD, Bird A (2007) CpG methylation is targeted to transcription units in an invertebrate genome. Genome Res 17:625–631

    Article  PubMed  CAS  Google Scholar 

  • The Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949

    Google Scholar 

  • Wang Y, Jorda M, Jones PL, Maleszka R, Ling X, Robertson HM, Mizzen CA, Peinado MA, Robinson GE (2006) Functional CpG methylation system in a social insect. Science 314:645–647

    Article  PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor HT (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for helpful comments. We are grateful to Dr. Michael Santos and Dr. Shawn Arellano for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick C. C. Leung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

MOSESM1 (PDF 190 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Leung, F.C.C. In Silico Prediction of Two Classes of Honeybee Genes with CpG Deficiency or CpG Enrichment and Sorting According to Gene Ontology Classes. J Mol Evol 68, 700–705 (2009). https://doi.org/10.1007/s00239-009-9244-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9244-3

Keywords

Navigation