Skip to main content
Log in

The Evolutionary History of the Structure of 5S Ribosomal RNA

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

5S rRNA is the smallest nucleic acid component of the large ribosomal subunit, contributing to ribosomal assembly, stability, and function. Despite being a model for the study of RNA structure and RNA–protein interactions, the evolution of this universally conserved molecule remains unclear. Here, we explore the history of the three-domain structure of 5S rRNA using phylogenetic trees that are reconstructed directly from molecular structure. A total of 46 structural characters describing the geometry of 666 5S rRNAs were used to derive intrinsically rooted trees of molecules and molecular substructures. Trees of molecules revealed the tripartite nature of life. In these trees, superkingdom Archaea formed a paraphyletic basal group, while Bacteria and Eukarya were monophyletic and derived. Trees of molecular substructures supported an origin of the molecule in a segment that is homologous to helix I (α domain), its initial enhancement with helix III (β domain), and the early formation of the three-domain structure typical of modern 5S rRNA in Archaea. The delayed formation of the branched structure in Bacteria and Eukarya lends further support to the archaeal rooting of the tree of life. Remarkably, the evolution of molecular interactions between 5S rRNA and associated ribosomal proteins inferred from a census of domain structure in hundreds of genomes established a tight relationship between the age of 5S rRNA helices and the age of ribosomal proteins. Results suggest 5S rRNA originated relatively quickly but quite late in evolution, at a time when primordial metabolic enzymes and translation machinery were already in place. The molecule therefore represents a late evolutionary addition to the ribosomal ensemble that occurred prior to the early diversification of Archaea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammons D, Rampersad J, Fox GE (1999) 5S rRNA gene deletions cause an unexpectedly high fitness loss in Escherichia coli. Nucleic Acids Res 27:637–642

    Article  CAS  PubMed  Google Scholar 

  • Azad AA, Failla P, Hanna PJ (1998) Inhibition of ribosomal subunit association and protein synthesis by oligonucleotides corresponding to defined regions of 18S rRNA and 5S rRNA. Biochem Biophys Res Commun 248:51–56

    Article  CAS  PubMed  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289:905–920

    Article  CAS  PubMed  Google Scholar 

  • Barciszewska MZ, Szymanski M, Erdmann VA, Barciszewski J (2000) 5S ribosomal RNA. Biomacromolecules 1:297–302

    Article  CAS  PubMed  Google Scholar 

  • Barciszewska MZ, Szymanski M, Erdmann VA, Barciszewski J (2001) Structure and functions of 5S rRNA. Acta Biochim Pol 48:191–198

    CAS  PubMed  Google Scholar 

  • Betzel C, Lorenz S, Furste JP, Bald R, Zhang M, Schneider TR, Wilson KS, Erdmann VA (1994) Crystal structure of domain A of Thermus flavus 5S rRNA and the contribution of water molecules to its structure. FEBS Lett 351:159–164

    Article  CAS  PubMed  Google Scholar 

  • Bloch DP, McArthur B, Mirrop S (1985) tRNA–rRNA sequence homologies: evidence for an ancient modular format shared by tRNAs and rRNAs. Biosystems 17:209–225

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov AA, Dontsova OA, Dokudovskaya SS, Lavrik IN (1995) Structure and function of 5S rRNA in the ribosome. Biochem Cell Biol 73:869–876

    Article  CAS  PubMed  Google Scholar 

  • Brodersen DE, Clemons WM Jr, Carter AP, Wimberly BT, Ramakrishnan V (2002) Crystal structure of the 30S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16S RNA. J Mol Biol 316:725–768

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Doolittle W (1995) Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci USA 92:2441–2445

    Article  CAS  PubMed  Google Scholar 

  • Caetano-Anollés G (2001) Novel strategies to study the role of mutation and nucleic acid structure in evolution. Plant Cell Tissue Org Cult 67:115–132

    Article  Google Scholar 

  • Caetano-Anollés G (2002a) Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54:333–345

    PubMed  Google Scholar 

  • Caetano-Anollés G (2002b) Tracing the evolution of RNA structure in ribosomes. Nucleic Acids Res 30:2575–2587

    Article  PubMed  Google Scholar 

  • Caetano-Anollés G (2005) Grass evolution inferred from chromosomal rearrangements and geometrical and statistical features in RNA structure. J Mol Evol 60:635–652

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Caetano-Anollés D (2003) An evolutionarily structured universe of protein architecture. Genome Res 13:1563–1571

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Kim HS, Mittenthal JE (2007) The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. Proc Natl Acad Sci USA 104:9358–9363

    Article  PubMed  CAS  Google Scholar 

  • Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE (2009) The origin, evolution and structure of the protein world. Biochem J 417:621–637

    Article  PubMed  CAS  Google Scholar 

  • Carson M (1997) Ribbons. Methods Enzymol 277:493–505

    Article  CAS  PubMed  Google Scholar 

  • Christiansen J, Garrett RA (1986) How do protein L18 and 5S RNA interact? In: Hardesty B, Kramer G (eds) Structure functions and genetics of ribosomes. Springer, New York, pp 253–269

    Google Scholar 

  • Deshmukh M, Tsay Y-F, Paulovich A, Woolford JL Jr (1993) Yeast ribosomal protein L1 required for the stability of newly synthesized 5S rRNA and the assembly of 60S ribosomal subunits. Mol Cell Biol 13:2835–2845

    CAS  PubMed  Google Scholar 

  • Di Giulio M (1992) On the origin of the transfer RNA molecule. J Theor Biol 159:199–214

    Article  CAS  PubMed  Google Scholar 

  • Di Giulio M (2007) The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 401:108–113

    Article  CAS  PubMed  Google Scholar 

  • Dick TP, Schamel WWA (1995) Molecular evolution of transfer RNA from two precursor hairpins: implications for the origin of protein synthesis. J Mol Evol 41:1–9

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Lawrence CE (1999) A Bayesian statistical algorithm for secondary structure prediction. Comput Chem 23:387–400

    Article  CAS  PubMed  Google Scholar 

  • Dokudovskaya S, Dontsova O, Shpanchenko O, Bogdanov A, Brimacombe R (1996) Loop IV of 5 S ribosomal RNA has contacts both to domain II and to domain V of the 23 S RNA. RNA 2:146–152

    CAS  PubMed  Google Scholar 

  • Doolittle RF (2005) Evolutionary aspects of whole-genome biology. Curr Opin Struct Biol 15:248–253

    Article  CAS  PubMed  Google Scholar 

  • Eigen M, Winkler-Oswatitsch R (1981) Transfer-RNA, an early gene? Naturwissenschaften 68:282–292

    Article  CAS  PubMed  Google Scholar 

  • Erdmann VA, Pieler T, Wolters J, Digweed M, Vogel D, Hartmann R (1986) Comparative structural and functional studies on small ribosomal RNAs. In: Hardesty B, Kramer G (eds) Structure function and genetics of ribosomes. Spring, New York, pp 164–183

    Google Scholar 

  • Fanning TG, Traut RR (1981) Topography of the E. coli 5S RNA-protein complex as determined by crosslinking with dimethyl suberimidate and dimethyl-3, 3′-dithiobispropionimidate. Nucleic Acids Res 9:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Forterre P (2009) The universal tree of life and the Last Universal Cellular Ancestor (LUCA): revolution and counter-revolutions. In: Caetano-Anollés G (ed), Evolutionary genomics and systems biology. Wiley, Hoboken (in press)

  • Fox GE, Woese CR (1975) 5S RNA secondary structure. Nature 256:505–507

    Article  CAS  PubMed  Google Scholar 

  • Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322

    Article  CAS  PubMed  Google Scholar 

  • Gabashvili IS, Whirl-Carrillo M, Bada M, Banatao DR, Altman RB (2003) Ribosomal dynamics inferred from variations in experimental measurements. RNA 9:1301–1307

    Article  CAS  PubMed  Google Scholar 

  • Gautheret RR, Konings D, Gutell R (1995) Pairing motifs in ribosomal RNA. RNA 1:807–814

    CAS  PubMed  Google Scholar 

  • Glansdorff N, Xu Y, Labedan B (2008) The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29

    Article  PubMed  CAS  Google Scholar 

  • Gribaldo S, Cammarano P (1998) The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47:508–516

    Article  CAS  PubMed  Google Scholar 

  • Hamilton TB, Turner J, Barilla K, Romaniuk PJ (2001) Contribution of individual amino acids to the nucleic acid binding activities of Xenopus zinc finger proteins TFIIIA and p43. Biochemistry 40:6093–6101

    Article  CAS  PubMed  Google Scholar 

  • Hannock J, Wagner R (1982) A structural model of 5S RNA from E. coli based on intramolecular crosslinking evidence. Nucleic Acids Res 10:1257–1269

    Article  Google Scholar 

  • Hillis DM, Huelsenbeck JP (1992) Signal, noise, and reliability in molecular phylogenetic analyses. J Hered 83:189–195

    CAS  PubMed  Google Scholar 

  • Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431

    Article  CAS  PubMed  Google Scholar 

  • Holmberg L, Nygard O (2000) Release of ribosome-bound 5 S rRNA upon cleavage of the phosphodiester bond between nucleotides A54 and A55 in 5 S rRNA. Biol Chem 381:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Hopfield JJ (1978) Origin of the genetic code: a testable hypothesis based on tRNA structure, sequence, and kinetic proofreading. Proc Natl Acad Sci USA 75:4334–4338

    Article  CAS  PubMed  Google Scholar 

  • Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445–472

    CAS  PubMed  Google Scholar 

  • Hori H, Lim B-L, Osawa S (1985) Evolution of green plants as deduced from 5S rRNA sequences. Proc Natl Acad Sci USA 82:820–823

    Article  CAS  PubMed  Google Scholar 

  • Hunt LT, George DG, Yeh L-S, Dayhoff MO (1984) Evolution of prokaryote and eukaryote lines inferred from sequence evidence. Orig Life 14:657–664

    Article  CAS  PubMed  Google Scholar 

  • Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  CAS  PubMed  Google Scholar 

  • Joachimiak A, Nalaskowska N, Barciszewska M, Barciszewski J, Mashkova T (1990) Higher plant 5S rRNAs share common secondary and tertiary structure. A new three domains model. Int J Macromol 12:321–327

    Article  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2003) A novel class of SINE elements derived from 5S rRNA. Mol Biol Evol 20:694–702

    Article  CAS  PubMed  Google Scholar 

  • Kluge AG (1989) A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst Zool 38:7–25

    Article  Google Scholar 

  • Kluge AG, Wolf AJ (1993) Cladistics: what’s in a word? Cladistics 9:183–199

    Article  Google Scholar 

  • Kouvela E, Gerbanas GV, Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL (2007) Changes in the conformation of 5S rRNA cause alternations in principal functions of the ribosomal nanomachine. Nucleic Acids Res 35:5108–5119

    Article  CAS  PubMed  Google Scholar 

  • Küntzel H, Heidrich M, Piechulla B (1981) Phylogenetic tree derived from bacterial, cytosol and organelle 5S rRNA sequences. Nucleic Acids Res 9:1451–1461

    Article  PubMed  Google Scholar 

  • Küntzel H, Piechulla B, Hahn U (1983) Consensus structure and evolution of 5S rRNA. Nucleic Acids Res 11:893–900

    Article  PubMed  Google Scholar 

  • Lodmell JS, Dahlberg AE (1997) A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. Science 277:1262–1267

    Article  CAS  PubMed  Google Scholar 

  • Luehrsen KR, Fox GE (1981) Secondary structure of eukaryotic cytoplasmic 5S ribosomal RNA. Proc Natl Acad Sci USA 78:2150–2154

    Article  CAS  PubMed  Google Scholar 

  • Maizels N, Weiner AM (1994) Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. Proc Natl Acad Sci USA 91:6729–6734

    Article  CAS  PubMed  Google Scholar 

  • Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  • McDougall J, Wittmann-Liebold B (1994) Comparative analysis of the protein components from 5S rRNA—protein complexes of halophilic archaebacteria. Eur J Biochem 221:779–785

    Article  CAS  PubMed  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247:536–540

    CAS  PubMed  Google Scholar 

  • Nearhos SP, Fuerst JA (1987) Reanalysis of 5S rRNA sequence data for the Vibrionaceae with the clustan program suite. Curr Microbiol 15:329–335

    Article  CAS  Google Scholar 

  • Nixon KC, Carpenter JM (1996) On simultaneous analysis. Cladistics 12:221–241

    Article  Google Scholar 

  • Okada S, Okada T, Aimi T, Morinaga T, Itoh T (2000) HSP70 and ribosomal protein L2: novel 5S rRNA binding proteins in Escherichia coli. FEBS Lett 485:153–156

    Article  CAS  PubMed  Google Scholar 

  • Penny D, Poole A (1999) The nature of the last universal common ancestor. Curr Opin Genet Dev 9:672–677

    Article  CAS  PubMed  Google Scholar 

  • Pollock D (2003) The Zuckerkandl Prize: structure and evolution. J Mol Evol 56:375–376

    CAS  Google Scholar 

  • Ramakrishnan V (2002) Ribosome structure and the mechanism of translation. Cell 108:557–572

    Article  CAS  PubMed  Google Scholar 

  • Sergiev PV, Bogdanov AA, Dahlberg AE, Dontsova O (2000) Mutations at position A960 of E. coli 23S ribosomal RNA influence the structure of 5S ribosomal RNA and the peptidyltransferase region of 23 S ribosomal RNA. J Mol Biol 299:379–389

    Article  CAS  PubMed  Google Scholar 

  • Smirnov AV, Entelis NS, Krasheninnikov IA, Martin R, Tarassov IA (2008) Specific features of 5S rRNA structure–Its interactions with macromolecules and possible functions. Biochemistry 73:1418–1437

    CAS  PubMed  Google Scholar 

  • Smith N, Matheson AT, Yaguchi M, Willick GE, Nazar RN (1978) The 5S rRNA—protein complex from an extreme halophile Halobacterium cutirubrum: purification and characterization. Eur J Biochem 89:501–509

    Article  CAS  PubMed  Google Scholar 

  • Steel M, Penny D (2000) Parsimony, likelihood, and the role of models in molecular phylogenetics. Mol Biol Evol 17:839–850

    CAS  PubMed  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2008a) The origin and evolution of tRNA inferred from phylogenetic analysis of structure. J Mol Evol 66:21–35

    Article  CAS  PubMed  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2008b) Evolutionary patterns in the sequence and structure of transfer RNA: early origins of Archaea and viruses. PLoS Comput Biol 4:e1000018

    Article  PubMed  CAS  Google Scholar 

  • Sun F-J, Caetano-Anollés G (2008c) Evolutionary patterns in the sequence and structure of transfer RNA: a window into early translation and the genetic code. PLoS ONE 3:e2799

    Article  PubMed  CAS  Google Scholar 

  • Sun F-J, Fleurdépine S, Bousquet-Antonelli C, Caetano-Anollés G, Deragon J-M (2007) Common evolutionary trends for SINE RNA structures. Trends Genet 23:26–33

    Article  PubMed  CAS  Google Scholar 

  • Sun F-J, Harish A, Caetano-Anollés G (2009) Phylogenetic utility of RNA structure: evolution’s arrow and emergence of early biochemistry and diversified life. In: Caetano-Anollés G (ed), Evolutionary genomics and systems biology, Wiley, Hoboken (in press)

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (*and other methods), Version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2002) 5S ribosomal RNA database. Nucleic Acids Res 30:176–178

    Article  CAS  PubMed  Google Scholar 

  • Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J (2003) 5 S rRNA: structure and interactions. Biochem J 371:641–651

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kikuchi Y (2001) Origin of the cloverleaf shape of transfer RNA—the double-hairpin model: implication for the role of tRNA intron and the long extra loop. Viva Origino 29:134–142

    CAS  Google Scholar 

  • Teixido J, Altamura S, Londei P, Amils R (1989) Structural and functional exchangeability of 5S RNA species from the eubacterium E. coli and the thermoacidophilic archaebacterium Sulfolobus solfataricus. Nucleic Acids Res 17:845–851

    Article  CAS  PubMed  Google Scholar 

  • Villanueva E, Luehrsen KR, Gibson J, Delihas N, Fox GE (1985) Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequences. J Mol Evol 22:46–52

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Caetano-Anollés G (2006) Global phylogeny determined by the combination of protein domains in proteomes. Mol Biol Evol 23:2444–2454

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Caetano-Anollés G (2009) The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world. Structure 17:66–78

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G (2007) Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res 17:1572–1585

    Article  PubMed  Google Scholar 

  • Weiner AM, Maizels N (1987) tRNA-like structures tag the 3′ ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci USA 84:7383–7387

    Article  CAS  PubMed  Google Scholar 

  • Widmann J, Di Giulio M, Yarus M, Knight R (2005) tRNA creation by hairpin duplication. J Mol Evol 61:24–535

    Article  CAS  Google Scholar 

  • Woese CR (1969) The biological significance of the genetic code. Prog Mol Subcell Biol 1:5–46

    CAS  Google Scholar 

  • Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859

    Article  CAS  PubMed  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA 95:6854–6859

    Article  Google Scholar 

  • Wong JT-F, Chen J, Mat W-K, Ng S-K, Xue H (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene 403:39–52

    Article  CAS  PubMed  Google Scholar 

  • Wool IG (1986) Studies of the structure of eukaryotic (mammalian) ribosomes. In: Hardesty B, Kramer G (eds) Structure function and genetics of ribosomes. Springer, New York, pp 391–411

    Google Scholar 

  • Xue H, Tong K-L, Marck C, Grosjean H, Wong JT-F (2003) Transfer RNA paralogs: evidence for genetic code-amino acid biosynthesis coevolution and an archaeal root of life. Gene 310:59–66

    Article  CAS  PubMed  Google Scholar 

  • Xue H, Ng S-K, Tong K-L, Wong JT-F (2005) Congruence of evidence for a Methanopyrus-proximal root of life based on transfer RNA and aminoacyl-tRNA synthetase genes. Gene 360:120–130

    Article  CAS  PubMed  Google Scholar 

  • Yonath A (2002) The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Annu Rev Biophys Biomol Struct 31:257–273

    Article  CAS  PubMed  Google Scholar 

  • Yusupov MM, Yusupov GZ, Baucom A, Lieberman K, Earnest TN, Cate JHD, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  CAS  PubMed  Google Scholar 

  • Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ajith Harish for help with 3D mappings, Minglei Wang for calculating nd values, and Hee Shin Kim, Ajith Harish, Minglei Wang, Liudmila Yafremava, Kyung Mo Kim, and Jay Mittenthal for helpful discussions. This study was supported by National Science Foundation Grants MCB-0343126 and MCB-0749836, the Critical Research Initiative of the University of Illinois, and the United Soybean Board. Any opinions, findings, and conclusions and recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the funding agencies. Both authors designed and performed the experiments, analyzed the data, and wrote the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Caetano-Anollés.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2288 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, FJ., Caetano-Anollés, G. The Evolutionary History of the Structure of 5S Ribosomal RNA. J Mol Evol 69, 430–443 (2009). https://doi.org/10.1007/s00239-009-9264-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-009-9264-z

Keywords

Navigation