Skip to main content
Log in

Evaluation of Models of the Mechanisms Underlying Intron Loss and Gain in Aspergillus Fungi

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Although intron loss and gain have been widely observed, their mechanisms are still to be determined. In four Aspergillus genomes, we found 204 cases of intron loss and 84 cases of intron gain. Using this data, we tested common hypotheses of intron loss or gain. Statistical analysis showed that adjacent introns tend to be lost simultaneously and small introns were preferentially lost, supporting the model of mRNA-mediated intron loss. The lost introns reside in internal regions of genes, which is inconsistent with the traditional version of the model (partial length cDNAs are reverse transcribed from 3′ ends of mRNAs), but consistent with an alternate version (partial length cDNAs are produced by self-primed reverse transcription). The latter version was not supported by examination of the abundance of T-rich segments in mRNAs. Preferential loss of internal introns might be explained by highly efficient recombination at internal regions of genes. Among the 84 cases of intron gain, we found a significantly higher frequency of short direct repeats near exon–intron boundary than in conserved introns, supporting the double-strand break repair model. We also found possible source sequences for two cases of intron gain, one by gene conversion and one by insertion of a mitochondrial sequence during double-strand break repair. Source sequences for most gained introns could not be identified and the possible reasons were discussed. In the four Aspergillus genomes studied, we did not find evidence of frequent parallel intron gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldon T (2010) Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 10:57

    Article  PubMed  Google Scholar 

  • Basu MK, Rogozin IB, Deusch O, Dagan T, Martin W, Koonin EV (2008) Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. Mol Biol Evol 25:111–119

    Article  CAS  PubMed  Google Scholar 

  • Carmel L, Wolf YI, Rogozin IB, Koonin EV (2007) Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 17:1034–1044

    Article  CAS  PubMed  Google Scholar 

  • Catania F, Lynch M (2008) Where do introns come from? PLoS Biol 6:e283

    Article  PubMed  Google Scholar 

  • Catania F, Gao X, Scofield DG (2009) Endogenous mechanisms for the origins of spliceosomal introns. J Hered 100:591–596

    Article  CAS  PubMed  Google Scholar 

  • Coulombe-Huntington J, Majewski J (2007a) Characterization of intron loss events in mammals. Genome Res 17:23–32

    Article  CAS  PubMed  Google Scholar 

  • Coulombe-Huntington J, Majewski J (2007b) Intron loss and gain in Drosophila. Mol Biol Evol 24:2842–2850

    Article  CAS  PubMed  Google Scholar 

  • de Souza SJ (2003) The emergence of a synthetic theory of intron evolution. Genetica 118:117–121

    Article  PubMed  Google Scholar 

  • Derr LK, Strathern JN, Garfinkel DJ (1991) RNA-mediated recombination in S. cerevisiae. Cell 67:355–364

    Article  CAS  PubMed  Google Scholar 

  • Eickbush TH, Furano AV (2002) Fruit flies and humans respond differently to retrotransposons. Curr Opin Genet Dev 12:669

    Article  CAS  PubMed  Google Scholar 

  • Farlow A, Meduri E, Dolezal M, Hua L, Schlotterer C (2010) Nonsense-mediated decay enables intron gain in Drosophila. PLoS Genet 6:e1000819

    Article  PubMed  Google Scholar 

  • Feiber AL, Rangarajan J, Vaughn JC (2002) The evolution of single-copy Drosophila nuclear 4f-rnp genes: Spliceosomal intron losses create polymorphic alleles. J Mol Evol 55:401–413

    Article  CAS  PubMed  Google Scholar 

  • Fink GR (1987) Pseudogenes in yeast? Cell 49:5–6

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Lynch M (2009) Ubiquitous internal gene duplication and intron creation in eukaryotes. Proc Natl Acad Sci USA 49:20818–20823

    Article  Google Scholar 

  • Hankeln T, Friedl H, Ebersberger I, Martin J, Schmidt ER (1997) A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. Gene 205:151–160

    Article  CAS  PubMed  Google Scholar 

  • Hoskins RA, Carlson JW, Kennedy C, Acevedo D, Evans-Holm M, Frise E, Wan KH, Park S, Mendez-Lago M, Rossi F, Villasante A, Dimitri P, Karpen GH, Celniker SE (2007) Sequence finishing and mapping of Drosophila melanogaster heterochromatin. Science 316:1625–1628

    Article  CAS  PubMed  Google Scholar 

  • Huppert JL (2008) Thermodynamic prediction of RNA-DNA duplex-forming regions in the human genome. Mol Biosyst 4:686–691

    Article  CAS  PubMed  Google Scholar 

  • Irimia M, Rukov JL, Penny D, Vinther J, Garcia-Fernandez J, Roy SW (2008) Origin of introns by ‘intronization’ of exonic sequences. Trends Genet 24:378–381

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22

    Article  CAS  PubMed  Google Scholar 

  • Jeffares DC, Penkett CJ, Bahler J (2008) Rapidly regulated genes are intron poor. Trends Genet 24:375–378

    Article  CAS  PubMed  Google Scholar 

  • Knowles DG, McLysaght A (2006) High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. Mol Biol Evol 23:1548–1557

    Article  CAS  PubMed  Google Scholar 

  • Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci USA 104:19908–19913

    Article  CAS  PubMed  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lawson MJ, Jiao J, Fan WG, Zhang LQ (2009) A pattern analysis of gene conversion literature. Comp Funct Genom 2009:761512

  • Li W, Tucker AE, Sung W, Thomas WK, Lynch M (2009) Extensive, recent intron gains in Daphnia populations. Science 326:1260–1262

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Zhu W, Silva J, Gu X, Buell CR (2006) Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 7:R41

    Article  PubMed  Google Scholar 

  • Llopart A, Comeron JM, Brunet FG, Lachaise D, Long M (2002) Intron presence-absence polymorphism in Drosophila driven by positive Darwinian selection. Proc Natl Acad Sci USA 99:8121–8126

    Article  CAS  PubMed  Google Scholar 

  • Loh Y-H, Brenner S, Venkatesh B (2008) Investigation of loss and gain of introns in the compact genomes of Pufferfishes (Fugu and Tetraodon). Mol Biol Evol 25:526–535

    Article  CAS  PubMed  Google Scholar 

  • Long M, Rosenberg C, Gilbert W (1995) Intron phase correlations and the evolution of the intron/exon structure of genes. Proc Natl Acad Sci USA 92:12495–12499

    Article  CAS  PubMed  Google Scholar 

  • Mak J, Kleiman L (1997) Primer tRNAs for reverse transcription. J Virol 71:8087–8095

    CAS  PubMed  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JEJ, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926

    Article  CAS  PubMed  Google Scholar 

  • Mourier T, Jeffares DC (2003) Eukaryotic intron loss. Science 300:1393

    Article  CAS  PubMed  Google Scholar 

  • Nielsen CB, Friedman B, Birren B, Burge CB, Galagan JE (2004) Patterns of intron gain and loss in fungi. PLoS Biol 2:e422

    Article  PubMed  Google Scholar 

  • Niu D-K (2007) Protecting exons from deleterious R-loops: a potential advantage of having introns. Biol Direct 2:11

    Article  PubMed  Google Scholar 

  • Niu D-K, Hou W-R, Li S-W (2005) mRNA-mediated intron losses: evidence from extraordinarily large exons. Mol Biol Evol 22:1475–1481

    Article  CAS  PubMed  Google Scholar 

  • Paigen K, Petkov P (2010) Mammalian recombination hot spots: properties, control and evolution. Nat Rev Genet 11:221–233

    Article  CAS  PubMed  Google Scholar 

  • Plohl M, Luchetti A, Mestrovic N, Mantovani B (2008) Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 409:72–82

    Article  CAS  PubMed  Google Scholar 

  • Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Trelles F, Tarro R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76

    Article  CAS  PubMed  Google Scholar 

  • Roy SW (2004) The origin of recent introns: transposons? Genome Biol 5:251

    Article  PubMed  Google Scholar 

  • Roy SW (2009) Intronization, de-intronization and intron sliding are rare in Cryptococcus. BMC Evol Biol 9:192

    Article  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005a) The pattern of intron loss. Proc Natl Acad Sci USA 102:713–718

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2005b) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Gilbert W (2006) The evolution of spliceosomal introns: patterns, puzzles and progress. Nat Rev Genet 7:211–221

    PubMed  Google Scholar 

  • Roy SW, Hartl DL (2006) Very little intron loss/gain in Plasmodium: intron loss/gain mutation rates and intron number. Genome Res 16:750–756

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Irimia M (2009) Mystery of intron gain: new data and new models. Trends Genet 25:67–73

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Penny D (2006a) Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution. Genome Res 16:1270–1275

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Penny D (2006b) Smoke without fire: most reported cases of intron gain in Nematodes instead reflect intron losses. Mol Biol Evol 23:2259–2262

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Penny D (2007) Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. Mol Biol Evol 24:171–181

    Article  CAS  PubMed  Google Scholar 

  • Roy SW, Irimia M, Penny D (2006) Very little intron gain in Entamoeba histolytica genes laterally transferred from prokaryotes. Mol Biol Evol 23:1824–1827

    Article  CAS  PubMed  Google Scholar 

  • Scherer S (2008) A short guide to the human genome. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sharpton TJ, Neafsey DE, Galagan JE, Taylor JW (2008) Mechanisms of intron gain and loss in Cryptococcus. Genome Biol 9:R24

    Article  PubMed  Google Scholar 

  • Stajich JE, Dietrich FS (2006) Evidence of mRNA-mediated intron loss in the human-pathogenic fungus Cryptococcus neoformans. Eukaryot Cell 5:789–793

    Article  CAS  PubMed  Google Scholar 

  • Stajich JE, Dietrich FS, Roy SW (2007) Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol 8:R223

    Article  PubMed  Google Scholar 

  • Szekvolgyi L, Nicolas A (2010) From meiosis to postmeiotic events: homologous recombination is obligatory but flexible. FEBS J 277:571–589

    Article  CAS  PubMed  Google Scholar 

  • Volff JN, Bouneau L, Ozouf-Costaz C, Fischer C (2003) Diversity of retrotransposable elements in compact pufferfish genomes. Trends Genet 19:674–678

    Article  CAS  PubMed  Google Scholar 

  • Wilkerson MD, Ru Y, Brendel VP (2009) Common introns within orthologous genes: software and application to plants. Brief. Bioinform 10:631–644

    Article  CAS  PubMed  Google Scholar 

  • Williams RL (1975) The shoot apex and leaf growth. Cambridge University Press, London

    Book  Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for helpful comments and Jian-Li Cao for his kind help. This work was supported by the Fundamental Research Funds for the Central Universities (2009SAP-4) and the Program for New Century Excellent Talents in University (NCET-07-0094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Ke Niu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, LY., Yang, YF. & Niu, DK. Evaluation of Models of the Mechanisms Underlying Intron Loss and Gain in Aspergillus Fungi. J Mol Evol 71, 364–373 (2010). https://doi.org/10.1007/s00239-010-9391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-010-9391-6

Keywords

Navigation