Skip to main content
Log in

Bacteria Isolated from the Different Developmental Stages and Larval Organs of the Obligate Parasitic Fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae)

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Wohlfahrtia magnifica (Diptera: Sarcophagidae) is the major myiasis-causing fly species in the whole of Eurasia for most important domestic animals. The aim of the present work was to obtain data on the culturable bacteria isolated under aerobic conditions from this fly: bacteria were isolated from all developmental stages (larvae, pupa, and imago) of Wohlfahrtia magnifica, and the third-stage larval organs were also sampled. To determine the possible antagonistic effects between the dominant bacterial groups, an antibiosis assay was carried out. Plating and isolation of bacteria was performed by classical microbiological methods. Characterization of the isolated strains was carried out via a polyphasic approach; classical phenotypic tests, chemotaxonomical examinations, and 16S rDNA sequence analyses were also applied. In the case of maggot macerate samples, members of the family Enterobacteriaceae were characteristic. Members of a new genus (Schineria) belonging to the γ subdivision of proteobacteria were also isolated. According to our data, the shifts in the Schineria and Proteus populations within the larvae are strongly influenced by their interactions with each other and among the members of the family Enterobacteriaceae. The pupa and imago samples contained several other Gram-negative bacteria (Stenotrophomonas, Brevundimonas, etc.). Among Gram-positive bacteria, in all maggot macerate samples, members of the genus Bacillus and the ArthrobacterMicrococcus group of actinobacteria were dominant (neither of them was a producer or sensitive to the compounds of other microorganisms), and bacteria related to the genus Corynebacterium were also found. From the larvae Aureobacterium liquefaciens and Enterococcus faecalis were isolated, and from the pupae Dietzia maris and Enterococcus faecalis. In the samples of third-stage larval organs, the dominant groups were the same as in the third-stage larval macerate sample; however, several additional genera/species were observed (Rhodococcus fascians, Streptomyces sp., Rathayibacter sp., Bacillus thuringiensis/cereus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. H Ishikawa (1989) A synthesis: the types of interaction system between bacteria and insects V Nardon AM Gianinazzi-Pearson L Margulis DC Smith (Eds) Endocytobiology 4 INRA Paris 355–361

    Google Scholar 

  2. B Groombridge (1992) Global biodiversity F Chapman M Hall (Eds) Status of Earth's Living Resources Academic Press London 69–73

    Google Scholar 

  3. AE Cazamier JHP Hackstein HJM Camp ParticleOp den J Rosenberg C Drift ParticleVan der (1997) ArticleTitleBacteria in the intestinal tract of different species of Arthropods Microb Ecol 33 189–197

    Google Scholar 

  4. MJR Hall R Farkas (2000) Traumatic myiasis of humans and animals L Papp B Darvas (Eds) Contributions to a Manual of Palearctic Diptera Science Herald Budapest 751–768

    Google Scholar 

  5. I Ruiz-Martinez MD Soler-Cruz R Benitez-Rodriguez S Munoz-Parra M Diaz-Lopez A Florido-Navio (1987) ArticleTitleMyiasis caused byWohlfahrtia magnifica in Southern Spain Isr J Vet Med 43 34–41

    Google Scholar 

  6. MJR Hall R Wall (1995) ArticleTitleMyiasis of humans and domestic animals Adv Parasitol 35 257–337 Occurrence Handle1:STN:280:DyaK2M3isFaisg%3D%3D Occurrence Handle7709854 Occurrence Handle10.1016/S0065-308X(08)60073-1

    Article  CAS  PubMed  Google Scholar 

  7. R Farkas MJR Hall F Kelemen (1997) ArticleTitleWound myiasis of sheep in Hungary Vet Parasitol 69 133–144 Occurrence Handle1:STN:280:DyaK2szjtVGkuw%3D%3D Occurrence Handle9187038

    CAS  PubMed  Google Scholar 

  8. R Farkas MJR Hall (1998) ArticleTitlePrevalence of traumatic myiasis in Hungary: a questionnaire survey of veterinarians Vet Rec 143 440–443 Occurrence Handle1:STN:280:DyaK1M%2FktV2guw%3D%3D Occurrence Handle9823605

    CAS  PubMed  Google Scholar 

  9. MJR Hall (1997) ArticleTitleTraumatic myiasis of sheep in Europe: a review Parasitologia 39 409–413 Occurrence Handle1:STN:280:DyaK1M%2FhvV2isw%3D%3D

    CAS  Google Scholar 

  10. I Ruiz-Martinez MD Soler-Cruz R Benitez-Rodriguez JM Perez-Jimenez M Diaz-Lopez (1991) ArticleTitleMyiasis caused by Wohlfahrtia magnifica in sheep and goats in southern Spain. II. Effect of age, body region and sex on larval infestation Isr J Vet Med 46 44–48

    Google Scholar 

  11. Khoga, JM (1994) From healthy skin to myiatic lesions: changes in the bacterial populations of vulval region in sheep. Ph.D. dissertation, Eötvös Loránd University, Budapest, pp 21–69

    Google Scholar 

  12. E Tóth R Farkas K Márialigeti IS Mokhtar (1998) ArticleTitleBacteriological investigations on wound myiasis of sheep caused by Wohlfahrtia magnifica (Diptera: Sarcophagidae) Acta Vet Hung 46 219–229 Occurrence Handle9704525

    PubMed  Google Scholar 

  13. JM Khoga E Tóth K Márialigeti J Borossay (2002) ArticleTitleFly-attracting volatiles produced by Rhodococcus fascians and Mycobacterium aurum isolated from myiatic lesions of sheep J Microbiol Methods 48 281–287 Occurrence Handle10.1016/S0167-7012(01)00330-X Occurrence Handle1:CAS:528:DC%2BD38XkvFen Occurrence Handle11777576

    Article  CAS  PubMed  Google Scholar 

  14. EO King MK Ward DE Raney (1954) ArticleTitleTwo simple media for the demonstration of pyocyanin and fluorescein J Lab Clin Med 44 301–302 Occurrence Handle1:STN:280:DyaG2c7gsVCisQ%3D%3D Occurrence Handle13184240

    CAS  PubMed  Google Scholar 

  15. ST Cowan KJ Steel (1974) Manual for Identification of Medical Bacteria Cambridge University Press Cambridge 8–96

    Google Scholar 

  16. M Claus (1992) ArticleTitleA standardised Gram staining procedure World J Microbiol Biotechnol 8 451–452 Occurrence Handle10.1007/BF01198764

    Article  Google Scholar 

  17. RM Smibert NR Krieg (1994) Phenotypic characterisation P Gerhardt RGE Murray WA Wood NR Krieg (Eds) Methods for General and Molecular Bacteriology American Society for Microbiology Washington, DC 603–711

    Google Scholar 

  18. JP Duguid (1951) ArticleTitleThe demonstration of bacterial capsules and slime J Pathol Bacteriol 63 673 Occurrence Handle10.1002/path.1700630413 Occurrence Handle1:STN:280:DyaG38%2FivVCrsA%3D%3D Occurrence Handle14898372

    Article  CAS  PubMed  Google Scholar 

  19. JJ Tarrand DHM Gröschel (1982) ArticleTitleRapid, modified oxidase test for oxidase-variable bacterial isolates J Clin Microbiol 16 772–774 Occurrence Handle1:STN:280:DyaL3s7gvFGmtA%3D%3D Occurrence Handle7153330

    CAS  PubMed  Google Scholar 

  20. R Hugh E Leifson (1953) ArticleTitleThe taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by Gram negative bacteria J Bacteriol 66 24–26 Occurrence Handle1:CAS:528:DyaG3sXmt1Chug%3D%3D Occurrence Handle13069461

    CAS  PubMed  Google Scholar 

  21. SD Elek E Levy (1954) ArticleTitleThe nature of discrepancies between haemolysins in culture filtrates and plate haemolysin patterns of staphylococci J Pathol Bacteriol 60 31–34

    Google Scholar 

  22. JS Simmons (1926) ArticleTitleA culture medium for differentiating organisms of typhoid colon aerogenes groups and for isolation of certain fungi J Infect Dis 39 209–211

    Google Scholar 

  23. AJ Holding JG Collee (1971) Routine biochemical tests JR Norris DW Ribbons (Eds) Methods in Microbiology 6A Academic Press London 1–7

    Google Scholar 

  24. K Yamada K Komagata (1972) ArticleTitleTaxonomic studies on coryneform bacteria. IV. Morphological, cultural, biochemical, and physiological characteristics J Gen Appl Microbiol 18 399–416

    Google Scholar 

  25. MD Collins T Pirouz M Goodfellow DE Minnikin (1977) ArticleTitleDistribution of menaquinones in actinomycetes and corynebacteria J Gen Microbiol 100 221–230 Occurrence Handle1:CAS:528:DyaE2sXlsVygtb4%3D Occurrence Handle894261

    CAS  PubMed  Google Scholar 

  26. I Groth P Schumann FA Rainey K Martin B Schuetze K Augsten (1997) ArticleTitleDemetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil Int J Syst Bacteriol 47 1129–1133 Occurrence Handle1:STN:280:DyaK2svnvVSjtA%3D%3D Occurrence Handle9336919

    CAS  PubMed  Google Scholar 

  27. DE Stead JE Sellwood J Wilson I Viney (1992) ArticleTitleEvaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria J Appl Bacteriol 72 315–321

    Google Scholar 

  28. I Groth P Schumann N Weiss K Martin FA Rainey (1996) ArticleTitleAgrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall Int J Syst Bacteriol 46 234–239 Occurrence Handle1:STN:280:DyaK287jvV2rsQ%3D%3D Occurrence Handle8573501 Occurrence Handle10.1099/00207713-46-1-234

    Article  CAS  PubMed  Google Scholar 

  29. FA Rainey WN Rainey RM Kroppenstedt E Stackebrandt (1996) ArticleTitleThe genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov Int J Syst Bacteriol 46 1088–1092 Occurrence Handle1:STN:280:DyaK2s%2Fhs1yitg%3D%3D Occurrence Handle8863440

    CAS  PubMed  Google Scholar 

  30. BL Madiak CT Cole CT Parker GM Garrity N Larsen B Li MJ Lilburn MJ McCaughey GJ Olsen R Overbeek S Pramanik JT Schmidt CR Woese (1997) ArticleTitleThe RDP (Ribosomal Database Project) Nucleic Acids Res 25 109–111

    Google Scholar 

  31. O Strunk W Ludwig (1995) ARB—A Software Environment for Sequence Data Dept. of Microbiology, Technical University of Munich Germany

    Google Scholar 

  32. SF Altschul TL Madden AA Schäffel J Zhang Z Zhang W Miller DJ Lipmann (1997) ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programs Nucleic Acids Res 25 3389–3402 Occurrence Handle10.1093/nar/25.17.3389 Occurrence Handle1:CAS:528:DyaK2sXlvFyhu7w%3D Occurrence Handle9254694

    Article  CAS  PubMed  Google Scholar 

  33. SW Quener DH Lively (1986) NoChapterTitle AL Demain NA Solomon (Eds) Manual of Industrial Microbiology and Biotechnology American Society for Microbiology Washington, DC 155–157

    Google Scholar 

  34. HC Romesburg (1984) Cluster Analysis for Researchers Lifetime Learning Publications Belmont, CA 14–23

    Google Scholar 

  35. E Tóth G Kovács P Schumann AL Kovács U Steiner A Halbritter K Márialigeti (2001) ArticleTitleSchineria larvae gen. nov. sp. nov., isolated from the 1st and 2nd larval stages of Wohlfahrtia magnifica (Diptera: Sarcophagidae) J Syst Evol Microbiol 51 401–407

    Google Scholar 

  36. B Greenberg (1959) ArticleTitlePersistence of bacteria in the developmental stages of housefly. IV. Infectivity of the newly emerged adult Am J Trop Med Hyg 8 618–627 Occurrence Handle1:STN:280:DyaF3c3it1CitQ%3D%3D Occurrence Handle13851549

    CAS  PubMed  Google Scholar 

  37. M Bromel FM Duh GR Erdman L Hammack G Gassner (1983) Bacteria associated with the srewworm fly [Cochliomya hominivorax (Coquerel)] and their metabolites V Nardon A Gianiazzi-Pearson M Margulis DC Smith (Eds) Endocytobiology 2 INRA Paris 791–802

    Google Scholar 

  38. JE Urban A Broce (1998) ArticleTitleFlies and their bacterial loads in greyhound dog kennels in Kansas Curr Microbiol 36 164–170 Occurrence Handle1:CAS:528:DyaK1cXhtlWktbs%3D Occurrence Handle9516545

    CAS  PubMed  Google Scholar 

  39. G Gassner FM Duh M Bromel (1983) Chitinolytic activity: a prelude to a symbiotic relationship between bacteria and the screwworm fly HEA Schenk W Schwemmler (Eds) Endocytobiology 2 INRA Paris 802–807

    Google Scholar 

  40. AG Porter EW Davidson JW Liu (1993) ArticleTitleMosquitocidal toxins of Bacilli and their genetic manipulation for effective biological control of mosquitoes Microbiol Rev 57 838–861 Occurrence Handle1:CAS:528:DyaK2cXksl2mtw%3D%3D Occurrence Handle7905597

    CAS  PubMed  Google Scholar 

  41. M Kocur (1984) Genus Micrococcus PHA Sneath NS Mair ME Sharpe JG Holt (Eds) Bergey's Manual of Systematic Bacteriology Williams and Wilkins Baltimore 1004–1008

    Google Scholar 

  42. DL Cruden AJ Markovetz (1987) ArticleTitleMicrobial ecology of the cockroach gut Annu Rev Microbiol 41 617–643 Occurrence Handle10.1146/annurev.mi.41.100187.003153 Occurrence Handle1:STN:280:DyaL1c%2FnsFymug%3D%3D Occurrence Handle3318681

    Article  CAS  PubMed  Google Scholar 

  43. GR Karsten HL Drake (1995) ArticleTitleComparative assessment of the aerobic and anaerobic microfloras of the earthworms guts and forest soils Appl Environ Microbiol 61 1039–1044 Occurrence Handle1:CAS:528:DyaK2MXktV2rtrw%3D Occurrence Handle16534954

    CAS  PubMed  Google Scholar 

  44. MD Collins CS Cummins (1984) Genus Corynebacterium PHA Sneath NS Mair ME Sharpe JG Holt (Eds) Bergey's Manual of Systematic Bacteriology Williams and Wilkins Baltimore 1320–1323

    Google Scholar 

  45. MJ Hardie (1984) Genus Streptococcus PHA Sneath NS Mair ME Sharpe JG Holt (Eds) Bergey's Manual of Systematic Bacteriology Williams and Wilkins Baltimore 1043–1071

    Google Scholar 

  46. JR Leadbetter EP Greenberg (2000) ArticleTitleMetabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus J Bacteriol 182 6921–6926 Occurrence Handle10.1128/JB.182.24.6921-6926.2000 Occurrence Handle1:CAS:528:DC%2BD3MXitVCmtbc%3D Occurrence Handle11092851

    Article  CAS  PubMed  Google Scholar 

  47. GR Erdmann M Bromel G Gassner T Freeman A Fischer (1984) ArticleTitleAntibacterial activity demonstrated by culture filtrates of Proteus mirabilis isolated from screwworm Cochliomyia hominivorax (Diptera Calliphorida) J Med Entomol 23 159–167

    Google Scholar 

  48. GR Erdmann SKW Khalil (1986) ArticleTitleIsolation and identification of two antibacterial agents produced by a strain of Proteus mirabilis isolated from screwworm Cochliomyia hominivorax (Diptera Calliphorida) J Med Entomol 23 208–217 Occurrence Handle1:CAS:528:DyaL28XitVemtL4%3D Occurrence Handle3517334

    CAS  PubMed  Google Scholar 

  49. JT Staley A Konopka (1985) ArticleTitleMeasurement of in situ activities of nonphotosyntetic microorganism in aquatic and terrestrial habitats Annu Rev Microbiol 39 321–346 Occurrence Handle10.1146/annurev.mi.39.100185.001541 Occurrence Handle1:STN:280:DyaL28%2FkvFaqtQ%3D%3D Occurrence Handle3904603

    Article  CAS  PubMed  Google Scholar 

  50. PBM Hugenholtz M Goebel NR Pace (1998) ArticleTitleImpact of culture-independent studies on the emerging phylogenetic view of bacterial diversity J Bacteriol 180 4765–4774 Occurrence Handle1:CAS:528:DyaK1cXmt1Sgu7k%3D Occurrence Handle9733676

    CAS  PubMed  Google Scholar 

  51. R Devereux GW Mundfrom (1994) ArticleTitleA phylogenetic tree of 16S rRNA sequences from sulphate-reducing bacteria in sandy marine sediment Appl Environ Microbiol 60 3437–3439 Occurrence Handle1:CAS:528:DyaK2cXlvFOns7g%3D Occurrence Handle7524446

    CAS  PubMed  Google Scholar 

  52. BJ Pasteur FE Dewhirst SM Cooke Y Fussing LK Poulsen JA Breznak (1996) ArticleTitlePhylogeny of not-yet-cultivated spirochetes from termite guts Appl Environ Microbiol 62 347–352

    Google Scholar 

  53. A Suau R Bonnet M Sutren JJ Gordon GR Gibson MD Collins J Dore (1999) ArticleTitleDirect analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut Appl Environ Microbiol 65 4799–4807 Occurrence Handle1:CAS:528:DyaK1MXnt1WmtL8%3D Occurrence Handle10543789

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Tóth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, E.M., Hell, É., Kovács, G. et al. Bacteria Isolated from the Different Developmental Stages and Larval Organs of the Obligate Parasitic Fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb Ecol 51, 13–21 (2006). https://doi.org/10.1007/s00248-005-0090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-005-0090-6

Keywords

Navigation