Skip to main content

Advertisement

Log in

Microbial Exopolymers Link Predator and Prey in a Model Yeast Biofilm System

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Protistan grazing on biofilms is potentially an important conduit enabling energy flow between microbial trophic levels. Contrary to the widely held assumption that protistan feeding primarily involves ingestion of biofilm cells, with negative consequences for the biofilm, this study demonstrated preferential grazing on the noncellular biofilm matrix by a ciliate, with selective ingestion of yeast and bacterial cells of planktonic origin over attached and biofilm-derived planktonic cells. Introducing a ciliate to two biofilm-forming Cryptococcus species, as well as two bacterial species in a model biofilm system, fluorescent probes were applied to determine ingestion of cellular and noncellular biofilm fractions. Fluoromicroscopy, as well as photometric quantification, confirmed that protistan grazing enhanced yeast biofilm metabolism, and an increase in biofilm biomass and viability. We propose that the extracellular polymeric matrix of biofilms may act as an interface regulating interaction between predator and prey, while serving as source of nutrients and energy for protists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Azam, F, Fenchel, T, Field, JG, Gray, JS, Meyer-Reil, LA, Thingstad, F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10: 257–263

    Article  Google Scholar 

  2. Bester, E, Wolfaardt, G, Joubert, L, Garny, K, Saftic, S (2005) Planktonic-cell yield of a pseudomonad biofilm. Appl Environ Microbiol 71: 7792–7798

    Article  PubMed  CAS  Google Scholar 

  3. Bettarel, Y, Sime-Ngando, T, Amblard, C, Dolan, J (2004) Viral activity in two contrasting lake ecosystems. Appl Environ Microbiol 70: 2941–2951

    Article  PubMed  CAS  Google Scholar 

  4. Bonkowski, M (2004) Protozoa and plant growth: the microbial loop in soil revisited. New Phytol 162: 617–631

    Article  Google Scholar 

  5. Botes, AL, Lotter, J, Rhode, OHJ, Botha, A (2005) Interspecies differences in the enantioselectivity of epoxide hydrolases in Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab'jeva & Reshetova) Golubev. Syst Appl Microbiol 28: 27–33

    Article  PubMed  CAS  Google Scholar 

  6. Brown, MRW, Barker, J (1999) Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms. Trends Microbiol 7: 46–50

    Article  PubMed  CAS  Google Scholar 

  7. Capra, F (1996) The Web of Life. Flamingo, London

    Google Scholar 

  8. Couch, CA, Meyer, JL, Hall, RO (1996) Incorporation of bacterial extracellular polysaccharide by black fly larvae (Simuliidae). J North Am Benthol Soc 15: 289–299

    Article  Google Scholar 

  9. Decho, AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Annu Rev 28: 73–163

    Google Scholar 

  10. Decho, AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20: 1257–1273

    Article  Google Scholar 

  11. Diling, L, Brzezinski, MA (2004) Quantifying marine snow as a food choice for zooplankton using stable silicon isotope tracers. J Plankton Res 26: 1105–1114

    Article  CAS  Google Scholar 

  12. Donlan, RM, Costerton, JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167–193

    Article  PubMed  CAS  Google Scholar 

  13. Douglas, LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11: 30–36

    Article  PubMed  CAS  Google Scholar 

  14. Dutz, J, Klein-Breteler, WCM, Kramer, G (2005) Inhibition of copepod feeding by exudates and transparent exopolymer particles (TEP) derived from a Phaeocystis globosa dominated phytoplankton community. Harmful Algae 4: 929–940

    Article  Google Scholar 

  15. Flemming, H-C, Leis, A, Strathmann, M, Leon-Morales, F (2005) The matrix reloaded—an interactive milieu. In: McBain, A, Allison, D, Pratten, J, Spratt, D, Upton, M, Verran, J (Eds.) Biofilms: Persistence and Ubiquity. BiofilmClub, Manchester, pp 67–82

    Google Scholar 

  16. Flemming, H-C, Wingender, J (2001) Relevance of microbial extracellular polymeric substances (EPSs)—part I: structural and ecological aspects. Water Sci Technol 43: 1–8

    PubMed  CAS  Google Scholar 

  17. Hahn, MW, Höfle, MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35: 113–121

    Article  PubMed  CAS  Google Scholar 

  18. Hall, RO, Meyer, JL (1998) The trophic significance of bacteria in a detritus-based stream food web. Ecology 79: 1995–2012

    Article  Google Scholar 

  19. Harder, W, Dijkhuizen, L (1983) Physiological responses to nutrient limitation. Annu Rev Microbiol 37: 1–23

    Article  PubMed  CAS  Google Scholar 

  20. Heaton, K, Drinkall, J, Minett, A, Hunt, A, Parry, JD (2001) Amoeboid grazing on surface-associated prey. In: Gilbert, P, Allison, DG, Brading, M, Verran, J, Walker, J (Eds.) Biofilm Community Interactions: Chance or Necessity? Bioline, Cardiff, pp 293–301

    Google Scholar 

  21. Højberg, O, Schnider, U, Winteler, HV, Sorensen, J, Haas, D (1999) Oxygen-sensing reporter strain of Pseudomonas fluorescens for monitoring the distribution of low-oxygen habitats in soil. Appl Environ Microbiol 65: 4085–4093

    PubMed  Google Scholar 

  22. Holmström, C, Kjelleberg, S (1999) Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30: 285–293

    PubMed  Google Scholar 

  23. Huws, SA, McBain, AJ, Gilbert, P (2005) Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol 98: 238–244

    Article  PubMed  CAS  Google Scholar 

  24. Jackson, SM, Jones, EBG (1991) Interactions within biofilms: the disruption of biofilm structure by protozoa. Kieler Meeresforsch 8: 264–268

    Google Scholar 

  25. Jürgens, K, Matz, C (2002) Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81: 413–434

    Article  PubMed  Google Scholar 

  26. Jurgens, K, Pernthaler, J, Schalla, S, Amann, R (1999) Morphological and compositional changes in a planktonic bacterial community in response to enhanced protozoan grazing. Appl Environ Microbiol 65: 1241–1250

    PubMed  CAS  Google Scholar 

  27. Kamper, M, Vetterkind, S, Berker, R, Hoppert, M (2004) Methods for in situ detection and characterization of extracellular polymers in biofilms by electron microscopy. J Microbiol Methods 57: 55–64

    Article  PubMed  CAS  Google Scholar 

  28. Kinner, NE, Harvey, RW, Blakeslee, K, Novarino, G, Meeker, LD (1998) Size-selective predation on groundwater bacteria by nano-flagellates in an organic-contaminated aquifer. Appl Environ Microbiol 64: 618–625

    PubMed  CAS  Google Scholar 

  29. Krembs, C, Eicken, H, Junge, K, Deming, JW (2002) High concentrations of exopolymeric substances in arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res 49: 2163–2181

    CAS  Google Scholar 

  30. Lawrence, JR, Snyder, RA (1998) Feeding behaviour and grazing impacts of a Euplotes sp. on attached bacteria. Can J Microbiol 44: 623–629

    Article  CAS  Google Scholar 

  31. Ling, SC, Alldredge, AL (2003) Does the marine copepod Calanus pacificus consume transparent exopolymer particles (TEP)? J Plankton Res 25: 507–515

    Article  CAS  Google Scholar 

  32. Long, RA, Azam, F, (1996) Abundant protein-containing particles in the sea. Aquat Microb Ecol 10: 213–221

    Article  Google Scholar 

  33. Matz, C, Bergfeld, T, Rice, SA, Kjelleberg, S (2004) Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol 6: 218–226

    Article  PubMed  Google Scholar 

  34. Matz, C, Deines, P, Jurgens, K (2002) Phenotypic variation in Pseudomonas sp. CM10 determines microcolony formation and survival under protozoan grazing. FEMS Microbiol Ecol 39: 57–65

    Article  CAS  PubMed  Google Scholar 

  35. Matz, C, Jurgens, K (2003) Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community. Microb Ecol 45: 384–398

    Article  PubMed  CAS  Google Scholar 

  36. Matz, C, Kjelleberg, S (2005) Off the hook—how bacteria survive protozoan grazing. Trends Microbiol 13: 302–307

    Article  PubMed  CAS  Google Scholar 

  37. Matz, C, McDougald, D, Moreno, AM, Yung, PY, Yildiz, FH, Kjelleberg, S (2005) Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proc Natl Acad Sci USA 102: 16819–16824

    Article  PubMed  CAS  Google Scholar 

  38. Millard, PJ, Roth, BL, Thi, H-PT, Yue, ST, Haugland, RP (1997) Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts. Appl Environ Microbiol 63: 2897–2905

    PubMed  CAS  Google Scholar 

  39. Mudryk, ZJ, Skorczewski, P (2004) Extracellular enzyme activity on the air–water interface of an estuarine lake. Estuar Coast Shelf Sci 59: 59–67

    Article  CAS  Google Scholar 

  40. Murray, JLS, Jumars, PA (2002) Clonal fitness of attached bacteria predicted by analog modeling. Bioscience 52: 343–355

    Article  Google Scholar 

  41. Neu, T (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60: 151–166

    PubMed  CAS  Google Scholar 

  42. Parry, JD, Hunt, AP, Drinkall, J, Heaton, K (2001) The influence of free living protozoa on aquatic biofilm dynamics. In: Gilbert, P, Allison, DG, Brading, M, Verran, J, Walker, J (Eds.) Biofilm Community Interactions: Chance or Necessity? Bioline, Cardiff, pp 255–261

    Google Scholar 

  43. Passow, U (2002) Transparent exopolymer particles in aquatic environments. Prog Oceanogr 55: 287–333

    Article  Google Scholar 

  44. Passow, U, Alldredge, AL (1999) Do transparent exopolymer particles (TEP) inhibit grazing by the euphausiid Euphasia pacifica? J Plankton Res 21: 2203–2217

    Article  CAS  Google Scholar 

  45. Pederson, K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res 24: 239–243

    Article  Google Scholar 

  46. Prieto, L, Sommer, F, Stibor, H, Koeve, W (2001) Effects of planktonic copepods on transparent exopolymeric particles (TEP) abundance and size spectra. J Plankton Res 23: 515–525

    Article  CAS  Google Scholar 

  47. Ronn, R, McCaig, AE, Griffiths, BS, Prosser, JI (2002) Impact of protozoan grazing on bacterial community structure in soil microcosms. Appl Environ Microbiol 68: 6094–6105

    Article  PubMed  CAS  Google Scholar 

  48. Saftic, S, Joubert, L-M, Bester, E, Wolfaardt, G. A biofilm apparatus for the teaching lab. ASM Focus Microbiol Educ 11: 12–14

  49. Sand, W, Gehrke, T (1999) Analysis and function of the EPS from the strong acidophile Thiobacillus ferrooxidans. In: Wingender, J, Neu, TR, Flemming, H-C (Eds.) Microbial Extracellular Polymeric Substances. Springer, Berlin, pp 127–141

    Google Scholar 

  50. Sherr, EB (1988) Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335: 348–351

    Article  CAS  Google Scholar 

  51. Snyder, RA (1991) Chemoattraction of a bacterivorous climate to bacteria surface compounds. Hydrobiologia 215: 205–213

    Article  CAS  Google Scholar 

  52. Steenbergen, JN, Shumann, HA, Casadevall, A (2001) Cryptococcus neoformans interactions with amoebae suggest an explanation for its virulence and extracellular pathogenic strategy in macrophages. Proc Natl Acad Sci USA 98: 15245–15250

    Article  PubMed  CAS  Google Scholar 

  53. Strom, S, Wolfe, G, Holmes, J, Stecher, H, Schimeneck, C, Lambert, S, Moreno, E (2003) Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol Oceanogr 48: 217–229

    Article  CAS  Google Scholar 

  54. Van der Aa, BC, Dufrene, YF (2002) In situ characterization of bacterial extracellular polymeric substance by AFM. Colloids Surf B Biointerfaces 23: 173–182

    Article  Google Scholar 

  55. Verdugo, P, Alldredge, AL, Azam, F, Kirchman, DL, Passow, U, Santschi, PH (2004) The oceanic gel phase: a bridge in the DOM–POM continuum. Mar Chem 92: 67–85

    Article  CAS  Google Scholar 

  56. Wolfaardt, GM, Lawrence, JR, Headley, JV, Robarts, RD, Caldwell, DE (1994) Microbial exopolymers provide a mechanism for bioaccumulation of contaminants. Microb Ecol 27: 279–291

    Article  CAS  Google Scholar 

  57. Wolfaardt, GM, Lawrence, JR, Robarts, RD, Caldwell, SJ, Caldwell, DE (1994) Multicellular organization in a degradative biofilm community. Appl Environ Microbiol 60: 434–446

    PubMed  CAS  Google Scholar 

  58. Wolfe, GV (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198: 225–244

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The Claude Leon Foundation is acknowledged for financial support for L.-M. Joubert. Funding from the South African NRF and MRC for G. Wolfaardt is acknowledged. S. Saftic is thanked for the use of the OLAPH prototype (German patent no. 19947651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Wolfaardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joubert, LM., Wolfaardt, G.M. & Botha, A. Microbial Exopolymers Link Predator and Prey in a Model Yeast Biofilm System. Microb Ecol 52, 187–197 (2006). https://doi.org/10.1007/s00248-006-9063-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-006-9063-7

Keywords

Navigation