Skip to main content

Advertisement

Log in

Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Real-time polymerase chain reaction (PCR) is considered a highly sensitive method for the quantification of microbial organisms in environmental samples. This study was conducted to evaluate real-time PCR with SybrGreen detection as a quantification method for sulfate-reducing bacteria (SRB) in industrial wastewater produced by several chemical industries. We designed four sets of primers and developed standard curves based on genomic DNA of Desulfovibrio vulgaris from pure culture and on plasmids containing dissimilatory sulfate reductase (dsrA) or adenosine-5′-phosphosulfate reductase (apsA) genes of SRB. All the standard curves, two for dsrA and two for apsA genes, had a linear range between 0.95 × 102 and 9.5 × 106 copies/μL and between 1.2 × 103 and 1.2 × 107 copies/μL, respectively. The theoretical copy numbers of the tenfold dilutions of D. vulgaris genomic DNA were best estimated (between 2.7 to 10.5 times higher than theoretical numbers) by the standard curve with DSR1F and RH3-dsr-R primers. To mimic the effect of foreign DNA in environmental samples, serial dilutions of D. vulgaris genomic DNA were mixed with Escherichia coli chromosomal DNA (40 ng per assay). This influenced neither PCR amplification nor the quantification of target DNA. Industrial wastewater was sampled during a 15-month period and analyzed for the presence of SRB, based on dsrA gene amplification. SRB displayed a higher abundance during the summer (about 107–108 targets mL−1) and lower during the winter (about 104–105 targets mL−1). The results indicate that our real-time PCR approach can be used for detection of uncultured SRB and will provide valuable information related to the abundance of SRB in durable environmental samples, such as complex and saline industrial wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alm, EW, Oerther, DB, Larsen, N, Stahl, DA, Raskin, L (1996) The oligonucleotide probe database. Appl Environ Microbiol 62: 299–306

    Google Scholar 

  2. Amann, RI, Stromley, J, Devereux, R, Key, R, Stahl, DA (1992) Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58: 614–623

    PubMed  CAS  Google Scholar 

  3. Amann, RI, Ludwig, W, Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59: 143–169

    PubMed  CAS  Google Scholar 

  4. Ben-Dov, E, Shapiro, OH, Siboni, N, Kushmaro, A (2006) Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl Environ Microbiol 72: 6302–6306

    Article  Google Scholar 

  5. Castro, HF, Williams, NH, Ogram, A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31: 1–9

    PubMed  CAS  Google Scholar 

  6. Clesceri, LS, Greenberg, AE, Eaton, AD (Eds.) (1998) Standard Methods for the Examination of Water and Wastewater, 20th edn., APHA, Washington, DC

  7. Daly, K, Sharp, RJ, McCarthy, AJ (2000) Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology 146: 1693–1705

    PubMed  CAS  Google Scholar 

  8. Dilling, W, Cypionka, H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71: 123–128

    CAS  Google Scholar 

  9. Felsenstein, J (1985) Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  10. Forney, LJ, Zhou, X, Brown, CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7: 210–220

    Article  PubMed  CAS  Google Scholar 

  11. Friedrich, MW (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184: 278–289

    Article  PubMed  CAS  Google Scholar 

  12. Fritz, G, Buchert, T, Huber, H, Stetter, KO, Kroneck, PMH (2000) Adenylylsulfate reductases from archaea and bacteria are 1:1 alpha beta-heterodimeric iron-sulfur flavoenzymes-high similarity of molecular properties emphasizes their central role in sulfur metabolism. FEBS Lett 473: 63–66

    Article  PubMed  CAS  Google Scholar 

  13. Hamilton, WA (1985) Sulphate-reducing bacteria and anaerobic corrosion. Annu Rev Microbiol 39: 195–217

    Article  PubMed  CAS  Google Scholar 

  14. Heidelberg, JF, Seshadri, R, Haveman, SA, Hemme, CL, Paulsen, IT, Kolonay, JF, Eisen, JA, Ward, N, Methe, B, Brinkac, LM, Daugherty, SC, DeBoy, RT, Dodson, RJ, Durkin, AS, Madupu, R, Nelson, WC, Sullivan, SA, Fouts, DE, Haft, DH, Selengut, J, Peterson, JD, Davidsen, TM, Zafar, N, Zhou, L, Radune, D, Dimitrov, G, Hance, M, Tran, K, Khouri, HM, Gill, J, Utterback, TR, Feldblyum, TV, Wall, JD, Voordouw, G, Fraser, CM (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22: 554–559

    Article  PubMed  CAS  Google Scholar 

  15. Jain, DK (1995) Evaluation of the semisolid Postgate’s B medium for enumerating sulfate-reducing bacteria. J Microbiol Methods 22:27–38

    Article  CAS  Google Scholar 

  16. Jonkers, HM, Koh, I-O, Behrend, P, Muyzer, G, de Beer, D (2005) Aerobic organic carbon mineralization by sulfate-reducing bacteria in the oxygen-saturated photic zone of a hypersaline microbial mat. Microbial Ecol 49: 291–300

    Article  CAS  Google Scholar 

  17. Klein, M, Friedrich, M, Roger, AJ, Hugenholtz, P, Fishbain, S, Abicht, H, Blackall, LL, Stahl, DA, Wagner, M (2001) Multiple lateral transfers of dissimilatory sulfate reductase genes between major lineages of sulfate-reducing prokaryotes. Appl Environ Microbiol 67: 6028–6035

    Google Scholar 

  18. Kondo, R, Nedwell, DB, Purdy, KJ, de Queiroz Silva, S (2004) Detection and enumeration of sulphate-reducing bacteria in estuarine sediments by competitive PCR. Geomicrobiol J 21: 145–157

    Article  CAS  Google Scholar 

  19. Kuhl, M, Jorgensen, BB (1992) Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl Environ Microbiol 58: 1164–1174

    PubMed  CAS  Google Scholar 

  20. Kumar, S, Tomura, K, Nei, M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150–163

    Article  PubMed  CAS  Google Scholar 

  21. Kwok, S, Kellogg, DE, McKinney, N, Spasic, D, Goda, L, Levenson, C, Sninsky, JJ (1990) Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies. Nucleic Acids Res 18: 999–1005

    Article  PubMed  CAS  Google Scholar 

  22. Labrenz, M, Brettar, I, Christen, R, Flavier, S, Bötel, J, Höfle, MG (2004) Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic sea. Appl Environ Microbiol 70: 4971–4979

    Article  PubMed  CAS  Google Scholar 

  23. Leloup, J, Quillet, L, Oger, C, Boust, D, Petit, F (2004) Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiol Ecol 47: 207–214

    Article  CAS  Google Scholar 

  24. Leloup, J, Petit, F, Boust, D, Deloffre, J, Bally, G, Clarisse, O, Quillet, L (2005) Dynamics of sulfate-reducing microorganisms (dsrAB genes) in two contrasting mudflats of the seine estuary (France). Microbi Ecol 50: 307–314

    Article  CAS  Google Scholar 

  25. Lillebæk, R (1995) Application of antisera raised against sulfate-reducing bacteria for indirect immunofluorescent detection of immunoreactive bacteria in sediment from the German Baltic Sea. Appl Environ Microbiol 61: 3436–3442

    PubMed  Google Scholar 

  26. Macfarlane, GT, Gibson, GR (1991) Sulphate-reducing bacteria. In: Levett, PN (Ed.) Anaerobic microbiology—a practical approach. Oxford University Press, Oxford, pp 201–222

    Google Scholar 

  27. Muyzer, G, Ramsing, NB (1995) Molecular methods to study the organization of microbial communities. Water Sci Technol 32: 1–9

    Article  CAS  Google Scholar 

  28. Nakagawa, T, Fukui, M (2003) Molecular characterization of community structures and sulfur metabolism within microbial streamers in Japanese hot springs. Appl Environ Microbiol 69: 7044–7057

    Article  PubMed  CAS  Google Scholar 

  29. Neretin, LN, Schippers, A, Pernthaler, A, Hamann, K, Amann, R, Jørgensen, BB (2003) Quantification of dissimilatory (bi)sulphite reductase gene expression in Desulfobacterium autotrophicum using real-time RT-PCR. Environ Microbiol 5: 660–671

    Article  PubMed  CAS  Google Scholar 

  30. Odom, JM (1990) Industrial and environmental concerns with sulfate-reducing bacteria. ASM News 56: 473–476

    Google Scholar 

  31. Odom, JM, Jessie, K, Knodel, E, Emptage, M (1991) Immunological cross-reactivities of adenosine-5′-phosphosulfate reductases from sulfate-reducing and sulfide-oxidizing bacteria. Appl Environ Microbiol 57: 727–733

    PubMed  CAS  Google Scholar 

  32. Postgate, JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  33. Rabus, R, Hansen, TA, Widdel, F (1999) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Dworkin, M, Schleifer, K-H, Stackebrandt, E (Eds) The prokaryotes: an evolving electronic database for the microbiological community. Springer, New York, pp 1–87

    Google Scholar 

  34. Ramsing, NB, Fossing, H, Ferdelman, TG, Andersen, F, Thamdrup, B (1996) Distribution of bacterial populations in a stratified fjord (Mariager Fjord, Denmark) quantified by in situ hybridization and related to chemical gradients in the water column. Appl Environ Microbiol 62: 1391–1404

    PubMed  CAS  Google Scholar 

  35. Rayemaekers, L (2000) Basic principles of quantitative PCR. Mol Biotechnol 15: 115–122

    Article  Google Scholar 

  36. Saito, N, Nei, M (1987) The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 4: 406–425

    Google Scholar 

  37. Saleh-Lakha, S, Miller, M, Campbell, RG, Schneider, K, Elahimanesh, P, Hart, MM, Trevors, JT (2005) Microbial gene expression in soil: methods, applications and challenges. J Microbiol Methods 63: 1–19

    Article  PubMed  CAS  Google Scholar 

  38. Sarkar, G, Cassady, J, Bottema, CDK, Sommer, SS (1990) Characterization of polymerase chain reaction amplification of specific alleles. Anal Biochem 186: 64–68

    Article  PubMed  CAS  Google Scholar 

  39. Smits, TH, Devenoges, C, Szynalski, K, Maillard, J, Holliger, C (2004) Development of a real-time PCR method for quantification of the three genera Dehalobacter, Dehalococcoides, and Desulfitobacterium in microbial communities. J Microbiol Methods 57: 369–378

    Article  PubMed  CAS  Google Scholar 

  40. Stubner, S (2002) Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. J Microbiol Methods 50: 155–164

    Article  PubMed  CAS  Google Scholar 

  41. Stubner, S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 57: 219–230

    Article  PubMed  CAS  Google Scholar 

  42. Tanner, RS (1989) Monitoring sulfate-reducing bacteria: comparison of enumeration media. J Microbiol Methods 10: 83–90

    Article  Google Scholar 

  43. Teske, A, Wawer, C, Muyzer, G, Ramsing, NB (1996) Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Appl Environ Microbiol 62: 1405–1415

    PubMed  CAS  Google Scholar 

  44. Tourova, TP (2003) Copy number of ribosomal operons in prokaryotes and its effect on phylogenetic analysis. Microbiology 72: 437–452

    Article  Google Scholar 

  45. Wagner, M, Roger, AJ, Flax, JL, Brusseau, GA, Stahl, DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180: 2975–2982

    PubMed  CAS  Google Scholar 

  46. Zachar, V, Thomas, RA, Goustin, AS (1993) Absolute quantification of target DNA: a simple competitive PCR for efficient analysis of multiple samples. Nucleic Acids Res 21: 2017–2018

    Article  PubMed  CAS  Google Scholar 

  47. Zverlov, V, Klein, M, Lücker, S, Friedrich, MW, Kellermann, J, Stahl, DA, Loy, A, Wagner, M (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187: 2203–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the Ramat-Hovav Industrial Council, Israel and the BMBF-MOST Cooperation in Water Technologies Grant WT-501. Special thanks are conveyed to the management and staff of the Ramat-Hovav Council for their cooperation. We thank Nachshon Siboni, Orr Shapiro, and Esti Kramarsky-Winter for technical support and useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Kushmaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben-Dov, E., Brenner, A. & Kushmaro, A. Quantification of Sulfate-reducing Bacteria in Industrial Wastewater, by Real-time Polymerase Chain Reaction (PCR) Using dsrA and apsA Genes. Microb Ecol 54, 439–451 (2007). https://doi.org/10.1007/s00248-007-9233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-007-9233-2

Keywords

Navigation