Skip to main content
Log in

Q-RT-PCR for Assessing Archaea, Bacteria, and Fungi During Leaf Decomposition in a Stream

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Leaf disks of Tilia cordata were exposed for up to 5 weeks in a first-order stream in Nova Scotia, Canada. The exponential decay rate k was 0.008 day−1. Ergosterol levels increased linearly to a maximum of 134 μg g−1 dry leaf mass. Release of conidia peaked at 700 day−1 mg−1 on leaves that had been exposed for 3 weeks; after 5 weeks, it declined to 15 mg−1. In total, 23 taxa of aquatic hyphomycetes were distinguished. Anguillospora filiformis contributed over 76% of the conidia during weeks 1, 2, and 3, and 16.5% in week 5. Three sets of primers specific for Bacteria, Archaea, and Fungi were applied in quantitative real-time polymerase chain reaction (Q-RT-PCR) to estimate relative DNA amounts. Archaeal DNA was consistently present at low levels. Bacterial and fungal DNA peaked between weeks 2 and 3, and declined in week 5. With the exception of week 1, fungal DNA exceeded bacterial DNA by between 12 and 110%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn Operons. J Bacteriol 186:2629–2635

    Article  PubMed  CAS  Google Scholar 

  2. Allan JD (1995) Stream ecology. Chapman & Hall, London

    Google Scholar 

  3. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Envir Microb 6:769–779

    Article  CAS  Google Scholar 

  4. Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Meth 55:541–555

    Article  CAS  Google Scholar 

  5. Baldy V, Gessner MO, Chauvet E (1995) Bacteria, fungi and the breakdown of leaf litter in a large river. Oikos 74:93–102

    Article  Google Scholar 

  6. Baldy V, Chauvet E, Charcosset J-Y, Gessner MO (2002) Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river. Aquat Microb Ecol 28:25–36

    Article  Google Scholar 

  7. Bärlocher F (2007) Molecular approaches applied to aquatic hyphomycetes. Fung Biol Rev 1:19–24

    Article  Google Scholar 

  8. Bärlocher F, Kendrick B (1974) Dynamics of the fungal population on leaves in a stream. J Ecol 62:761–791

    Article  Google Scholar 

  9. Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. BioTechn 34:790–802

    CAS  Google Scholar 

  10. Das M, Royer TV, Leff LG (2007) Diversity of fungi, bacteria and actinomycetes on leaves decomposing in a stream. Appl Environ Microbiol 73:756–767

    Article  PubMed  CAS  Google Scholar 

  11. DeLong EF (1992) Archaea in coastal marine environments. Proc Nat Acad Sci 89:5685–5689

    Article  PubMed  CAS  Google Scholar 

  12. Findlay S, Arsuffi SEG (1989) Microbial growth and detritus transformation during decomposition of leaf litter in a stream. Freshwat Biol 21:261–269

    Article  Google Scholar 

  13. Gessner MO (1997) Fungal biomass, production and sporulation associated with particulate organic matter in streams. Limnetica 13:33–44

    Google Scholar 

  14. Gessner MO, Chauvet E (1997) Growth and production of aquatic hyphomycetes in decomposing leaf litter. Limnol Oceanogr 42:496–505

    Article  CAS  Google Scholar 

  15. Gessner MO, Bärlocher F, Chauvet E (2003) Qualitative and quantitative analyses of aquatic hyphomycetes in streams. Fung Div Res Ser 10:127–157

    Google Scholar 

  16. Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134

    Article  Google Scholar 

  17. Gulis V, Ferreira V, Graça MAS (2006) Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshwat Biol 51:1655–1669

    Article  CAS  Google Scholar 

  18. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC, Huang Z, Wu W, Gu B, Jardine P, Criddle C, Zhou J (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME Journal 1:67–77

    Article  PubMed  CAS  Google Scholar 

  19. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  PubMed  CAS  Google Scholar 

  20. Hibbet DS (1992) Ribosomal RNA and fungal systematics. Trans Mycol Soc Jpn 33:533–536

    Google Scholar 

  21. Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Article  Google Scholar 

  22. Kaushik NK, Hynes HBN (1971) The fate of the dead leaves that fall into streams. Arch Hydrobiol 68:465–515

    Google Scholar 

  23. Keough BP, Schmidt TM, Hicks RE (2003) Archaeal nucleic acids in picoplankton from great lakes on three continents. Microb Ecol 46:238–248

    Article  PubMed  CAS  Google Scholar 

  24. Labrenz M, Brettar I, Christen R, Flavier S, Botel J, Hofle MG (2004) Development and application of a real-time PCR approach for quantification of uncultured bacteria in the Central Baltic Sea. Appl Environ Microb 70:4971–4979

    Article  CAS  Google Scholar 

  25. Maharning AR, Bärlocher F (1996) Growth and reproduction in aquatic hyphomycetes. Mycologia 88:80–88

    Article  Google Scholar 

  26. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol 5:28–39

    Article  PubMed  CAS  Google Scholar 

  27. McNamara CJ, Leff LG (2004) Bacterial community composition in biofilms on leaves in a northeastern Ohio stream. J N Am Benthol Soc 23:677–685

    Article  Google Scholar 

  28. Nikolcheva LG, Bärlocher F (2004a) Taxon-specific primers reveal unexpectedly high fungal diversity during leaf decomposition in a stream. Mycol Progr 3:41–50

    Article  Google Scholar 

  29. Nikolcheva LG, Bärlocher F (2004b) Seasonal and substrate preferences of fungi colonizing leaves in streams: traditional versus molecular evidence. Environ Microbiol 7:270–280

    Article  CAS  Google Scholar 

  30. Nikolcheva LG, Cockshutt AM, Bärlocher F (2003) Determining diversity of freshwater fungi on decaying leaves: comparison of traditional and molecular approaches. Appl Environ Microbiol 69:2548–2554

    Article  PubMed  CAS  Google Scholar 

  31. Nikolcheva LG, Bourque T, Bärlocher F (2005) Fungal diversity during initial stages of leaf decomposition in streams. Mycol Res 109:246–253

    Article  PubMed  Google Scholar 

  32. Osborn AM, Smith CJ (eds) (2005) Molecular microbial ecology. Taylor & Francis, New York

  33. Pascoal C, Cássio F (2004) Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environ Microbiol 70:5255–5273

    Article  CAS  Google Scholar 

  34. Pascoal C, Cássio F, Marcotegui A, Sanz B, Gomes P (2005) Role of fungi, bacteria, and invertebrates in leaf litter breakdown in a polluted river. J N Am Benthol Soc 24:784–797

    Article  Google Scholar 

  35. Petersen RC, Cummins KW (1974) Leaf processing in a woodland stream. Freshwat Biol 4:343–368

    Article  Google Scholar 

  36. Robertson CE, Harris JK, Spear JR, Pace NR (2005) Phylogenetic diversity and ecology of environmental Archaea. Curr Opin Microbiol 8:638–642

    Article  PubMed  CAS  Google Scholar 

  37. Rooney AP, Ward TJ (2005) Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Nat Acad Sci 102:5084–5089

    Article  PubMed  CAS  Google Scholar 

  38. Smith CJ (2005) Quantitative real-time PCR. In: Osborn AM, Smith CJ (eds) Molecular microbial ecology. Taylor & Francis, New York, pp 151–166

    Google Scholar 

  39. Sridhar KR, Bärlocher F (2000) Initial colonization, nutrient supply, and fungal activity on leaves decaying in streams. Appl Environ Microbiol 66:1114–1119

    Article  PubMed  CAS  Google Scholar 

  40. Suberkropp K (2000) Estimating production of litter-decomposing fungi in streams from rates of acetate incorporation into ergosterol. Verh Internat Verein Limnol 27:2426–2429

    Google Scholar 

  41. Suberkropp K (2001) Fungal growth, production and sporulation during leaf decomposition in two streams. Appl Environ Microbiol 67:5063–5068

    Article  PubMed  CAS  Google Scholar 

  42. Suberkropp K, Klug MJ (1976) Fungi and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–719

    Article  Google Scholar 

  43. Suberkropp K, Weyers H (1996) Application of fungal and bacterial methodologies to decomposing leaves in streams. Appl Envir Microbiol 62:1610–1615

    CAS  Google Scholar 

  44. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit tRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  PubMed  CAS  Google Scholar 

  45. Webster J (1992) Anamorph-teleomorph relationships. In: Bärlocher F (ed) The ecology of aquatic hyphomycetes. Springer, Heidelberg & New York, pp 99–107

    Google Scholar 

  46. Webster J, Weber RWS (2007) Introduction to Fungi. Cambridge University Press, Cambridge UK

    Google Scholar 

  47. Weider LJ, Elser JJ, Crease TJ, Mateos M, Cotner JB, Markow TA (2005) The functional significance of ribosomal rDNA variation: impacts on the evolutionary ecology of organisms. Annu Rev Ecol Syst 36:219–242

    Article  Google Scholar 

  48. Weyers HS, Suberkropp K (1996) Fungal and bacterial production during the breakdown of yellow poplar leaves in 2 streams. J N Am Benthol Soc 15:408–420

    Article  Google Scholar 

  49. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Google Scholar 

  50. Wilson IG (1997) Inhibition and facilitation of nucleic acid amplification. Appl Environ Microb 63:3741–3751

    CAS  Google Scholar 

  51. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    PubMed  CAS  Google Scholar 

  52. Young CJ (1995) Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. J Agr Food Chem 43:2904–2910

    Article  CAS  Google Scholar 

  53. Zhu F, Massana R, Not F, Marie D, Vaulot D (2005) Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microb Ecol 52:79–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by an NSERC Discovery grant to FB is gratefully acknowledged. We thank Amanda Cockshutt and Chris Brown for introducing us to RT-PCR. Meredith Hullar provided valuable advice concerning suitable primers for Archaea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Bärlocher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manerkar, M.A., Seena, S. & Bärlocher, F. Q-RT-PCR for Assessing Archaea, Bacteria, and Fungi During Leaf Decomposition in a Stream. Microb Ecol 56, 467–473 (2008). https://doi.org/10.1007/s00248-008-9365-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9365-z

Keywords

Navigation