Skip to main content

Advertisement

Log in

The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The influenza-virus M2 protein has proton channel activity required for virus uncoating and maturation of hemagglutinin (HA) through low-pH compartments. The proton channel is cytotoxic in heterologous expression systems and can be blocked with rimantadine. In an independent, rimantadine-resistant function, M2, interacting with the M1 protein, controls the shape of virus particles. These bud from cholesterol-rich membrane rafts where viral glycoproteins and matrix (M1)/RNP complexes assemble. We demonstrate that M2 preparations from influenza virus-infected cells and from a baculovirus expression system contain 0.5–0.9 molecules of cholesterol per monomer. Sequence analyses of the membrane-proximal M2 endodomain reveal interfacial hydrophobicity, a cholesterol-binding motif first identified in peripheral benzodiazepine receptor and human immunodeficiency virus gp41, and an overlapping phosphatidylinositol 4,5-bisphosphate-binding motif. M2 induced rimantadine-reversible cytotoxicity in intrinsically cholesterol-free E. coli, and purified E. coli-expressed M2 functionally reconstituted into cholesterol-free liposomes supported rimantadine-sensitive proton translocation. Therefore, cholesterol was nonessential for M2 ion-channel function and cytotoxicity and for the effect of rimantadine. Only about 5–8% of both M2 preparations, regardless of cholesterol content, associated with detergent-resistant membranes. Cholesterol affinity and palmitoylation, in combination with a short transmembrane segment suggest M2 is a peripheral raft protein. Preference for the raft/non-raft interface may determine colocalization with HA during apical transport, the low level of M2 incorporated into the viral envelope and its undisclosed role in virus budding for which a model is presented. M2 may promote clustering and merger of rafts and the pinching-off (fission) of virus particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6a, b
Fig. 7a–c
Fig. 8a, b

Similar content being viewed by others

Abbreviations

CRAC:

Cholesterol recognition/interaction amino acid consensus

DMPC:

l-α-dimyristoylphosphatidylcholine

DRM:

Detergent-resistant membrane

HA:

Hemagglutinin

HDL:

High-density lipoprotein

KPS:

Potassium phosphate buffer with K2SO4

LDL:

Low-density lipoprotein

MDCK:

Madin-Darby canine kidney

NA:

Neuraminidase

NaPS:

Sodium phosphate buffer with Na2SO4

Ni-NTA:

Nickel-nitrilotriacetic acid

OG:

N-octyl-β-d-glucopyranoside

PM:

Plasma membrane

PS:

Phosphatidylserine

RNP:

Ribonucleoprotein

Sf9 :

Spodoptera frugiperda

TDC:

Taurodeoxycholate

TGN:

trans-Golgi network

TM:

Transmembrane

T. ni:

Trichoplusia ni

TX-100:

Triton X-100

Φ:

Hydrophobic amino acid

References

  • Ahmed SN, Brown DA, London E (1997) On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry 36:10944–10953

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RT, Kushnir AS, White JM (2000) The transmembrane domain of influenza hemagglutinin exhibits a stringent length requirement to support the hemifusion to fusion transition. J Cell Biol 151:425–37

    Article  CAS  PubMed  Google Scholar 

  • Asano K, Asano A (1988) Binding of cholesterol and inhibitory peptide derivatives with the fusogenic hydrophobic sequence of F-glycoprotein of HVJ (Sendai virus): possible implication in the fusion reaction. Biochemistry 27:1321–1329

    CAS  PubMed  Google Scholar 

  • Avalos RT, You Z, Nayak DP (1997) Association of influenza virus NP and M1 proteins with cellular cytoskeletal elements in influenza virus-infected cells. J Virol 71:2947–2958

    CAS  PubMed  Google Scholar 

  • Bagnat M, Keränen S, Shevchenko A, Shevchenko A, Simons K (2000) Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc Natl Acad Sci USA 97:3254–3259

    Article  CAS  PubMed  Google Scholar 

  • Barman S, Ali A, Hui EK, Adhikary L, Nayak DP (2001) Transport of viral proteins to the apical membranes and interaction of matrix protein with glycoproteins in the assembly of influenza viruses. Virus Res 77:61–69

    CAS  PubMed  Google Scholar 

  • Bligh ED, Dyer WJ(1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  Google Scholar 

  • Briggs JAG, Wilk T, Fuller SD (2003) Do lipid rafts mediate virus assembly and pseudotyping? J Gen Virol 84:757–768

    Article  CAS  PubMed  Google Scholar 

  • Bron R, Kendal AP, Klenk HD, Wilschut J (1993) Role of the M2 protein in influenza virus membrane fusion: effects of amantadine and monensin on fusion kinetics. Virology 195:808–811

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Rose JK (1992) Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533–544

    Article  CAS  PubMed  Google Scholar 

  • Chizhmakov IV, Geraghty FM, Ogden DC, Hayhurst A, Antoniou M, Hay AJ (1996) Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukemia cells. J Physiol 494:329–336

    CAS  PubMed  Google Scholar 

  • Ciampor F, Bayley PM, Nermut MV, Hirst EMA, Sugrue RJ, Hay AJ (1992a) Evidence that the amantadine-induced, M2-mediated conversion of influenza A virus haemagglutinin to the low pH conformation occurs in an acidic trans Golgi compartment. Virology 188:14–24

    Article  CAS  PubMed  Google Scholar 

  • Ciampor F, Thompson CA, Hay AJ (1992b) Regulation of pH by the M2 protein of influenza A viruses. Virus Res 22:247–258

    Article  CAS  PubMed  Google Scholar 

  • Cleverley DZ, Geller HM, Lenard J (1997) Characterization of cholesterol-free insect cells infectible by baculoviruses: effects of cholesterol on VSV fusion and infectivity and on cytotoxicity induced by influenza M2 protein. Exp Cell Res 233:288–296

    Article  CAS  PubMed  Google Scholar 

  • Collawn JF, Stangel M, Kuhn LA, Esekogwu V, Jing S, Trowbridge IS, Tainer JA (1990) Transferrin receptor internalization sequence YXRF implicates a tight turn as the structural recognition motif for endocytosis. Cell 63:1061–1072

    CAS  PubMed  Google Scholar 

  • Coxey RA, Pentchev PG, Campbell G, Blanchette-Mackie EJ (1993) Differential accumulation of cholesterol in Golgi compartments of normal and Niemann-Pick type C fibroblasts incubated with LDL: a cytochemical freeze-fracture study. J Lipid Res 34:1165–1176

    CAS  PubMed  Google Scholar 

  • Cristian L, Lear JD, DeGrado WF (2003) Use of thiol-disulfide equilibria to measure the energetics of assembly of transmembrane helices in phospholipid bilayers. Proc Natl Acad Sci USA 100:14772–14777

    Article  CAS  PubMed  Google Scholar 

  • Dencher NA, Burghaus PA, Grzesiek S (1986) Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes. Methods Enzymol 127:746–760

    Article  CAS  PubMed  Google Scholar 

  • Ewart GD, Sutherland T, Gage PW, Cox GB (1996) The Vpu protein of human immunodeficiency virus type 1 forms cation-selective ion channels. J Virol 70:7108–7115

    CAS  PubMed  Google Scholar 

  • Fiedler K, Kobayashi T, Kurzchalia TV, Simons K (1993) Glycosphingolipid-enriched, detergent-insoluble complexes in protein sorting in epithelial cells. Biochemistry 32:6365–6373

    CAS  PubMed  Google Scholar 

  • Fischer WB, Sansom MSP (2002) Viral ion channels: structure and function. Biochim Biophys Acta 1561:27–45

    Article  CAS  PubMed  Google Scholar 

  • Garoff H, Hewson R, Opstelten DE (1998) Virus maturation by budding. Microbiol Mol Biol Rev 62:1171–1190

    CAS  PubMed  Google Scholar 

  • Gimpl G, Klein U, Reiländer H, Fahrenholz F (1995) Expression of oxytocin receptor in baculovirus-infected insect cells: high affinity binding is induced by a cholesterol-cyclodextrin complex. Biochemistry 34:13794–13801

    CAS  PubMed  Google Scholar 

  • Gómez-Puertas P, Albo C, Pérez-Pastrana E, Vivo A, Portela A (2000) Influenza virus matrix protein is the major driving force in virus budding. J Virol 74:11538–11547

    Article  PubMed  Google Scholar 

  • Grambas S, Hay AJ (1992) Maturation of influenza A virus haemagglutinin—estimates of the pH encountered during transport and its regulation by the M2 protein. Virology 190:11–18

    Article  CAS  PubMed  Google Scholar 

  • Guinea R, Carrasco L (1994) Influenza virus M2 protein modifies membrane permeability in E. coli cells. FEBS Lett 343:242–246

    Article  CAS  PubMed  Google Scholar 

  • Hansson GC, Simons K, van Meer G (1986) Two strains of the Madin-Darby canine kidney (MDCK) cell line have distinct glycosphingolipid compositions. EMBO J 5:483–489

    CAS  PubMed  Google Scholar 

  • Harder T (2001) Raft membrane domains and immunoreceptor functions. Adv Immunol 77:45–92

    Article  CAS  PubMed  Google Scholar 

  • Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    Article  CAS  PubMed  Google Scholar 

  • Hay AJ (1992) The action of adamantanamines against influenza A viruses: inhibition of the M2 ion channel protein. Semin Virol 3:21–30

    CAS  Google Scholar 

  • He Z, Feng S, Tong Q, Hilgemann DW, Philipson KD (2000) Interaction of PIP(2) with the XIP region of the cardiac Na/Ca exchanger. Am J Physiol Cell Physiol 278:C661-C666

    CAS  PubMed  Google Scholar 

  • Henkel JR, Weisz OA (1998) Influenza M2 protein slows traffic along the secretory pathway; pH perturbation of acidified compartments affects early Golgi transport steps. J Biol Chem 273:6518–6524

    Article  CAS  PubMed  Google Scholar 

  • Henkel JR, Gibson GA, Poland PA, Ellis MA, Hughey RP, Weisz OA (2000) Influenza M2 proton channel activity inhibits trans-Golgi network release of apical membrane and secreted proteins in polarized Madin-Darby canine kidney cells. J Cell Biol 148:495–504

    Article  CAS  PubMed  Google Scholar 

  • Hennessey ES, Hashemzadeh-Bonehi L, Hunt LA, Broome-Smith JK (1993) Assembly of eukaryotic class III (N-out, C-in) membrane proteins into the Escherichia coli cytoplasmic membrane. FEBS Lett 331:159–161

    CAS  PubMed  Google Scholar 

  • Holsinger LJ, Lamb RA (1991) Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulphide bonds. Virology 183:32–43

    CAS  PubMed  Google Scholar 

  • Holsinger LJ, Shaughnessy MA, Micko A, Pinto LH, Lamb RA (1995) Analysis of posttranslational modifications of the influenza virus M2 protein. J Virol 69:1219–1225

    CAS  PubMed  Google Scholar 

  • Hooper NG, Turner AJ (1988) Ectoenzymes of the kidney microvillar membrane. Biochem J 250:865–869

    CAS  PubMed  Google Scholar 

  • Hughey PG, Compans RW, Zebedee SL, Lamb RA (1992) Expression of the influenza A virus M2 protein is restricted to apical surfaces of polarized epithelial cells. J Virol 66:5542–5552

    CAS  PubMed  Google Scholar 

  • Hughey PG, Roberts PC, Holsinger LJ, Zebedee SL, Lamb RA, Compans RW (1995) Effects of antibody to the influenza A virus M2 protein on M2 surface expression and virus assembly. Virology 212:411–421

    Article  CAS  PubMed  Google Scholar 

  • Huttner WB, Zimmerberg J (2001) Implications of lipid microdomains for membrane curvature, budding and fission. Curr Opin Cell Biol 13:478–484

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW (2000) Hedgehog signaling: how cholesterol modulates the signal. Curr Biol 10:R180-R183

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Subbarao K, Bagal S, Leser GP, Murphy BR, Lamb RA (1996) Palmitylation of the influenza virus hemagglutinin (H3) is not essential for virus assembly or infectivity. J Virol 70:1406–1414

    CAS  PubMed  Google Scholar 

  • Jin H, Leser GP, Zhang J, Lamb RA (1997) Influenza hemagglutinin and neuraminidase cytoplasmic tails control particle shape. EMBO J 16:1236–1247

    Article  CAS  PubMed  Google Scholar 

  • Kato N, Eggers HJ (1969) Inhibition of uncoating of fowl plague virus by 1-adamantanamine hydrochloride. Virology 37:632–641

    Article  CAS  PubMed  Google Scholar 

  • Keller P, Simons K (1998) Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140:1357–1367

    Article  CAS  PubMed  Google Scholar 

  • Kochendoerfer GG, Salom D, Lear JD, Wilk-Orescen R, Kent SBH, DeGrado WF (1999) Total synthesis of the integral membrane protein influenza A virus M2: role of its C-terminal domain in tetramer assembly. Biochemistry 38:11905–11913

    Article  CAS  PubMed  Google Scholar 

  • Kundu A, Avalos RT, Sanderson CM, Nayak DP (1996) Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J Virol 70:6508–6515

    CAS  PubMed  Google Scholar 

  • Kurtz S, Luo G, Hahnenberger KM, Brooks C, Gecha O, Ingalls K, Numata K, Krystal M (1995) Growth impairment resulting from expression of influenza virus M2 protein in Saccharomyces cerevisiae: identification of a novel inhibitor of influenza virus. Antimicrob Agents Chemother 39:2204–2209

    CAS  PubMed  Google Scholar 

  • Kurzchalia TV, Dupree P, Parton RG, Kellner R, Virta H, Lehnert M, Simons K (1992) VIP21 a 21–kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. J Cell Biol 118:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Lamb RA, Krug RM (1996) Orthomyxoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM, Chanock RM, Melnick JL, Monath TP, Roizman B, Straus SE (eds) Fields virology, 3rd edn. Lippincott-Raven, Philadelphia, pp 1353–1395

  • Lamb RA, Zebedee SL, Richardson CD (1985) Influenza virus M2 protein is an integral membrane protein expressed on the infected cell surface. Cell 40:627–633

    Article  CAS  PubMed  Google Scholar 

  • Lamb RA, Holsinger LJ, Pinto LH (1994) The influenza A virus M2 ion channel protein and its role in the influenza virus life cycle. In: Wimmer E (ed) Cellular receptors of animal viruses. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 303–321

  • Latham T, Galarza JM (2001) Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J Virol 75:6154–6165

    Article  CAS  PubMed  Google Scholar 

  • Li H, Papadopoulos V (1998) Peripheral-type benzodiazepine receptor function in cholesterol transport. Identification of a putative cholesterol recognition/interaction amino acid sequence and consensus pattern. Endocrinology 139:4991–4997

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yao Z, Degenhardt B, Teper G, Papadopoulos V (2001) Cholesterol binding at the cholesterol recognition/interaction amino acid consensus (CRAC) of the peripheral-type benyodiazepine receptor and inhibition of steroidogenesis by an HIV TAT-CRAC peptide. Proc Natl Acad Sci USA 98:1267–1272

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Schroeder C (2001) Definitive assignment of proton selectivity and attoampere unitary current to the M2 ion channel protein of influenza A virus. J Virol 75:3647–3656

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Naim HY, Rodriguez AC, Roth MG (1998) Mutations in the middle of the transmembrane domain reverse the polarity of transport of the influenza virus hemagglutinin in MDCK epithelial cells. J Cell Biol 142:51–57

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Heider H, Schroeder C (1997) Different modes of inhibition by adamantane amine derivatives and natural polyamines of the functionally reconstituted influenza virus M2 proton channel protein. J Gen Virol 78:767–774

    CAS  PubMed  Google Scholar 

  • Liu Y, Casey L, Pike LJ (1998) Compartmentalization of phosphatidylinositol 4,5-bisphosphate in low-density membrane domains in the absence of caveolin. Biochem Biophys Res Commun 245:684–690

    Article  CAS  PubMed  Google Scholar 

  • Lohmeyer J, Talens LT, Klenk HD (1979) Biosynthesis of influenza virus envelope in abortive infection. J Gen Virol 42:73–88

    CAS  PubMed  Google Scholar 

  • Manié SN, Debreyne S, Vincent S, Gerlier D (2000) Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J Virol 74:305–311

    PubMed  Google Scholar 

  • Marheineke K, Grünewald S, Christie W, Reiländer H (1998) Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (T.n) insect cells used for baculovirus infection. FEBS Lett 441:49–52

    Article  CAS  PubMed  Google Scholar 

  • Melkonian KA, Ostermeyer AG, Chen JZ, Roth MG, Brown DA (1999) Role of lipid modifications in targeting proteins to detergent-resistant membrane rafts. J Biol Chem 274:3910–3917

    Article  CAS  PubMed  Google Scholar 

  • Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV (1996) Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett 388:143–149

    Article  CAS  PubMed  Google Scholar 

  • Mould JA, Drury JE, Frings SM, Kaupp UB, Pekosz E, Lamb RA, Pinto LH (2000) Permeation and activation of the M2 ion channel of influenza A virus. J Biol Chem 275:31038–31050

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R (1999) Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type I envelope glycoprotein-mediated membrane fusion. J Virol 73:6089–6092

    PubMed  Google Scholar 

  • Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14:4695–4704

    CAS  PubMed  Google Scholar 

  • Murata M, Peränen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K (1995) VIP21/caveolin is a cholesterol-binding protein. Proc Natl Acad Sci USA 92:10339–10343

    CAS  PubMed  Google Scholar 

  • Nayak DP, Barman S (2002) Role of lipid rafts in virus assembly and budding. Adv Virus Res 58:1-28

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi M, Cramer A, Vey M, Ohuchi R, Garten M, Klenk HD (1994) Rescue of vector-expressed fowl plague virus hemagglutinin in biologically active form by acidotropic agents and coexpressed M2 protein. J Virol 68:920–926

    CAS  PubMed  Google Scholar 

  • Parks GD, Lamb RA (1991) Topology of eukaryotic type II membrane proteins: importance of N-terminal positively charged residues flanking the hydrophobic domain. Cell 64:777–787

    CAS  PubMed  Google Scholar 

  • Pepinsky RB, Zheng C, Wen D, Rayhorn P, Baker DP, Williams KP, Bixler SA, Ambrose CM, Garber EA, Miatkowski K, Taylor FR, Wang EA, Galdes A (1998) Identification of a palmitic acid-modified form of human sonic hedgehog. J Biol Chem 273:14037–14045

    Article  CAS  PubMed  Google Scholar 

  • Pickl WF, Pimentel-Muiños FX, Seed B (2001) Lipid rafts and pseudotyping. J Virol 75:7175–7183

    Article  CAS  PubMed  Google Scholar 

  • Pinto LH, Holsinger LJ, Lamb RA (1992) Influenza virus M2 protein has ion channel activity. Cell 69:517–528

    Article  CAS  PubMed  Google Scholar 

  • Porter JA, Young KE, Beachy PA (1996) Cholesterol modification of hedgehog signaling domains in animal development. Science 274:255–259

    Article  CAS  PubMed  Google Scholar 

  • Puertollano R, Li S, Lisanti MP, Alonso MA (1997) Recombinant expression of the MAL proteolipid, a component of glycolipid-enriched membrane microdomains, induces the formation of vesicular structures in insect cells. J Biol Chem 272:18311–18317

    Article  CAS  PubMed  Google Scholar 

  • Ren J, Lew S, Wang Z, London E (1997) Transmembrane orientation of hydrophobic alpha-helices is regulated both by the relationship of helix length to bilayer thickness and by cholesterol concentration. Biochemistry 36:10213–10220

    Article  CAS  PubMed  Google Scholar 

  • Rietveld A, Neutz S, Simons K, Eaton S (1999) Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 274:12049–12054

    Article  CAS  PubMed  Google Scholar 

  • Roberts PC, Compans RW (1998) Host cell dependence of viral morphology. Proc Natl Acad Sci USA 95:5746–51

    Article  CAS  PubMed  Google Scholar 

  • Roberts PC, Lamb RA, Compans RW (1998) The M1 and M2 proteins of influenza virus are important determinants in filamentous particle formation. Virology 240:127–137

    Article  CAS  PubMed  Google Scholar 

  • Rolls MM, Marquardt MT, Kielian M, Machamer CE (1997) Cholesterol-independent targeting of Golgi membrane proteins in insect cells. Mol Biol Cell 8:2111–2118

    CAS  PubMed  Google Scholar 

  • Ruigrok RWH, Barge A, Durrer P, Brunner J, Ma K, Whittaker GR (2000) Membrane interaction of influenza virus M1 protein. Virology 267:289–298

    Article  CAS  PubMed  Google Scholar 

  • Sáez-Cirión A, Nir S, Lorizate M, Agirre A, Cruz A, Pérez-Gil J, Nieva JL (2002) Sphingomyelin and cholesterol promote HIV gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J Biol Chem 277:21776–21785

    Article  PubMed  Google Scholar 

  • Sakaguchi T, Leser GP, Lamb RA (1996) The ion channel activity of the influenza virus M2 protein affects transport through the Golgi apparatus. J Cell Biol 133:733–747

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi T, Tu Q, Pinto LH, Lamb RA (1997) The active oligomeric state of the minimalistic influenza virus M2 ion channel is a tetramer. Proc Natl Acad Sci USA 94:5000–5005

    Article  CAS  PubMed  Google Scholar 

  • Saldanha JW, Czabotar PE, Hay AJ, Taylor WR (2002) A model for the cytoplasmic domain of the influenza A virus M2 channel by analogy to the HIV-1 vpu protein. Protein Pept Lett 9:495–502

    CAS  PubMed  Google Scholar 

  • Salzwedel K, West JT, Hunter E (1999) A conserved tryptophan-rich motif in the membrane-proximal region of the human immunodeficiency virus type 1 gp41 ectodomain is important for Env-mediated fusion and virus infectivity. J Virol 73:2469–2480

    CAS  PubMed  Google Scholar 

  • Sanderson CM, Avalos R, Kundu A, Nayak DP (1995) Interaction of Sendai viral F, HN and M proteins with host cytoskeletal and lipid components in Sendai virus-infected BHK cells. Virology 209:701–707

    Article  CAS  PubMed  Google Scholar 

  • Sankaram MB, Thompson TE (1990) Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry 29:10676–10684

    CAS  PubMed  Google Scholar 

  • Scheiffele P, Roth MG, Simons K (1997) Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J 16:5501–5508

    Article  CAS  PubMed  Google Scholar 

  • Scheiffele P, Rietveld A, Wilk T, Simons K (1999) Influenza viruses select ordered lipid domains during budding from the plasma membrane. J Biol Chem 274:2038–2044

    Article  CAS  PubMed  Google Scholar 

  • Schmidt MFG (1982) Acylation of viral spike glycoproteins: a feature of enveloped RNA viruses. Virology 116:327–338

    Article  CAS  PubMed  Google Scholar 

  • Schroeder F, Holland JF, Bieber LL (1972) Fluorometric investigations of the interaction of polyene antibiotics with sterols. Biochemistry 11:3105–3111

    CAS  PubMed  Google Scholar 

  • Schroeder C, Ford CF, Wharton SA, Hay AJ (1994a) Functional reconstitutition in lipid vesicles of influenza virus M2 protein expressed by baculovirus: evidence for proton transfer activity. J Gen Virol 75:3477–3484

    CAS  PubMed  Google Scholar 

  • Schroeder R, London E, Brown D (1994b) Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behaviour. Proc Natl Acad Sci USA 91:12130–12134

    CAS  PubMed  Google Scholar 

  • Schroeder RJ, Ahmed SN, Zhu Y, London E, Brown DA (1998) Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains. J Biol Chem 273:1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Skibbens JE, Roth MG, Matlin KS (1989) Differential extractability of influenza virus hemagglutinin during intracellular transport in polarized epithelial cells and nonpolar fibroblasts. J Cell Biol 108:821–832

    Article  CAS  PubMed  Google Scholar 

  • Smejkal GB, Hoff HF (1994) Filipin staining of lipoproteins in polyacrylamide gels: sensitivity and photobleaching of the fluorophore and its use in a double staining method. Electrophoresis 15:922–925

    CAS  PubMed  Google Scholar 

  • Smith CA, Graham CM, Mathers K, Skinner A, Hay AJ, Schroeder C, Thomas DB (2002) Conditional ablation of T-cell development by a novel viral ion channel transgene. Immunology 105:306–313

    Article  CAS  PubMed  Google Scholar 

  • Suárez T, Gallaher WR, Agirre A, Goñi FM, Nieva JL (2000) Membrane interface-interacting sequences within the ectodomain of the human immunodeficiency virus type 1 envelope glycoprotein: putative role during viral fusion. J Virol 74:8038–8047

    Article  PubMed  Google Scholar 

  • Sugrue RJ, Hay AJ (1991) Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel. Virology 180:617–624

    Article  CAS  PubMed  Google Scholar 

  • Sugrue RJ, Belshe RB, Hay AJ (1990a) Palmitoylation of the influenza A virus M2 protein. Virology 179:51–56

    Article  CAS  PubMed  Google Scholar 

  • Sugrue RJ, Bahadur G, Zambon MC, Hall-Smith M, Douglas AR, Hay AJ (1990b) Specific structural alteration of the influenza haemagglutinin by amantadine. EMBO J 9:3469–3476

    CAS  PubMed  Google Scholar 

  • Takeda M, Pekosz A, Shuck K, Pinto LH, Lamb RA (2002) Influenza A virus M2 ion channel activity is essential for efficient replication in tissue culture. J Virol 76:1391–1399

    CAS  PubMed  Google Scholar 

  • Takeuchi K, Lamb RA (1994) Influenza virus M2 protein ion channel activity stabilizes the native form of fowl plague virus hemagglutinin during intracellular transport. J Virol 68:911–919

    CAS  PubMed  Google Scholar 

  • Thiele C, Hannah MJ, Fahrenholz F, Huttner W (2000) Cholesterol binds to synaptophysin and is required for biogenesis of synaptic vesicles. Nature Cell Biol 2:42–49

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Gao PF, Pinto LH, Lamb RA, Cross TA (2003) Initial structure and dynamic characterization of the M2 protein transmembrane and amphipathic helices in lipid bilayers. Protein Sci 12:2597–2605

    Article  CAS  PubMed  Google Scholar 

  • Varadhachary A, Maloney PC (1990) A rapid method for reconstitution of bacterial membrane proteins. Mol Microbiol 4:1407–1411

    CAS  PubMed  Google Scholar 

  • Veit M, Klenk HD, Rott R, Kendal A (1991) The M2 protein of influenza A virus is acylated. J Gen Virol 72:1461–1465

    CAS  PubMed  Google Scholar 

  • Vincent N, Genin C, Malvoisin E (2002) Identification of a conserved domain of the HIV-1 transmembrane protein gp41 which interacts with cholesteryl groups. Biochim Biophys Acta 1567:157–164

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Lamb RA, Pinto LH (1995) Activation of the M2 ion channel of influenza virus, a role for the transmembrane domain histidine residue. Biophys J 69:1363–1371

    CAS  PubMed  Google Scholar 

  • Webb RJ, East JM, Sharma RP, Lee AG (1998) Hydrophobic mismatch and the incorporation of peptides into lipid bilayers: a possible mechanism for retention in the Golgi. Biochemistry 37:673–679

    Article  CAS  PubMed  Google Scholar 

  • Wharton SA, Skehel JJ, Wiley DC (1986) Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149:27–35

    Article  CAS  PubMed  Google Scholar 

  • White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    Article  CAS  PubMed  Google Scholar 

  • Whittacker GR, Helenius A (1998) Nuclear import and export of viruses and virus genomes. Virology 246:1-23

    Article  PubMed  Google Scholar 

  • Whittacker GR, Bui M, Helenius A (1996) The role of nuclear import and export in influenza virus infection. Trends Cell Biol 6:67–71

    Article  PubMed  Google Scholar 

  • Wichman A (1979) Affinity chromatography of human plasma low- and high-density lipoproteins. Elution by selective cleavage of a bond in the spacer. Biochem J 181:691–698

    CAS  PubMed  Google Scholar 

  • Zebedee SL, Lamb RA (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62:2762–2772

    CAS  PubMed  Google Scholar 

  • Zebedee SL, Lamb RA (1989) Growth restriction of influenza A virus by M2 protein antibody is genetically linked to the M1 protein. Proc Natl Acad Sci USA 86:1061–1065

    CAS  PubMed  Google Scholar 

  • Zebedee SL, Richardson CD, Lamb RA (1985) Characterization of the influenza virus M2 integral membrane protein and expression at the infected-cell surface from cloned cDNA. J Virol 56:502–511

    CAS  PubMed  Google Scholar 

  • Zhang J, Lamb RA (1996) Characterization of the membrane association of the influenza virus matrix protein in living cells. Virology 225:255–266

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Leser GP, Pekosz A, Lamb RA (2000a) The cytoplasmic tails of the influenza virus spike glycoproteins are required for normal genome packaging. Virology 269:325–334

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Pekosz A, Lamb RA (2000b) Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol 74:4634–4644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C.S. expresses her gratitude to Prof. Nikolaus Müller-Lantzsch and Prof. Friedrich Graesser at the Department of Virology of the University of the Saarland in Homburg. The authors are grateful for advice from and critical discussion with Drs. Barry Ely and Stephen A. Wharton, and thank Alan J. Hay (National Institute for Medical Research, London, U.K.) for the gift of antisera. We are indebted to Drs. Bernd Rüstow (Surfactant Laboratory of the Charité) for his support of lipid analysis and Brigitte Brux (Protein Analytics Laboratory of the Charité) for advice on cholesterol assays and native gels. Prof. Andreas Herrmann generously granted access to fluorimeters at the Institute of Biophysics, Humboldt University. Nadine Hardel helped with the cloning and Kathlen Schröder is thanked for reliable technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (grant No. Schr 554/2) and the Charité Berlin (project No. 98-273).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Schroeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, C., Heider, H., Möncke-Buchner, E. et al. The influenza virus ion channel and maturation cofactor M2 is a cholesterol-binding protein. Eur Biophys J 34, 52–66 (2005). https://doi.org/10.1007/s00249-004-0424-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0424-1

Keywords

Navigation