Skip to main content
Log in

Studying the effect of a charged surface on the interaction of bleomycin with DNA using an atomic force microscope

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The cleavage of DNA caused by the antitumoral drug bleomycin has been investigated using atomic force microscopy (AFM). This work deals with the effect that adsorbing DNA onto a positively- or negatively-charged surface has on the double-strand cleavage of DNA by Fe(III)/bleomycin. Quantitative analysis of the number of breaks per DNA molecule, in bulk and at the surface of the mica substrate, has been performed by analyzing AFM images. It turns out that the cleavage of DNA is strongly inhibited by a positively-charged surface. Our experiments can be interpreted using a simple electrostatic model. This paper is a first step in the study of DNA accessibility to ligand such as bleomycin, using AFM in liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abraham AT, Zhou X, Hecht SM (1999) DNA Cleavage by Fe(II)·Bleomycin conjugated to a solid support. J Am Chem Soc 121:1982–1983

    Article  CAS  Google Scholar 

  • Ajmera S, Wu JC, Worth L, Jr, Rabow LE, Stubbe J, Kozarich JW (1986) DNA degradation by bleomycin: evidence for 2′R-proton abstraction and for C-O bond cleavage accompanying base propenal formation. Biochemistry 25:6586–6592

    CAS  PubMed  Google Scholar 

  • Allison DP, Kerper PS, Doktycz MJ, Spain JA, Modrich P, Larimer FW, Thundat T, Warmack RJ (1996) Direct atomic force microscope imaging of EcoRI endonuclease site specifically bound to plasmid DNA molecules. Proc Natl Acad Sci USA 93:8826–8829

    Article  CAS  PubMed  Google Scholar 

  • Berge T, Jenkins NS, Hopkirk RB, Waring MJ, Edwardson JM, Henderson RM (2002) Structural perturbations in DNA caused by bis-intercalation of ditercalinium visualised by atomic force microscopy. Nucleic Acids Res 30:2980–2986

    Article  CAS  PubMed  Google Scholar 

  • Biggins JB, Prudent JR, Marshall DJ, Ruppen M, Thorson JS (2000) A continuous assay for DNA cleavage: the application of “break lights” to enediynes, iron-dependent agents, and nucleases. Proc Natl Acad Sci USA 97:13537–13542

    Article  CAS  PubMed  Google Scholar 

  • Buettner GR, Moseley PL (1992) Ascorbate both activates and inactivates bleomycin by free radical generation. Biochemistry 31:9784–9788

    CAS  PubMed  Google Scholar 

  • Burger RM (1998) Cleavage of nucleic acids by bleomycin. Chem Rev 98:1153–1170

    Article  CAS  PubMed  Google Scholar 

  • Cary RB, Peterson SR, Wang J, Bear DG, Bradbury EM, Chen DJ (1997) DNA looping by Ku and the DNA-dependent protein kinase. Proc Natl Acad Sci USA 94:4267–4272

    Article  CAS  PubMed  Google Scholar 

  • Chien M, Grollman AP, Horwitz SB (1977) Bleomycin-DNA interactions: fluorescence and proton magnetic resonance studies. Biochemistry 16:2641–2647

    CAS  PubMed  Google Scholar 

  • Claussen CA, Long EC (1999) Nucleic acid recognition by metal complexes of bleomycin. Chem Rev 99:2797–2816

    Article  CAS  PubMed  Google Scholar 

  • Cuiffo BP, Fox HB, Babior BM (1985) Chromatin structure during bleomycin-induced DNA damage and repair. Free Radical Biol Med 1:139–144

    Article  CAS  Google Scholar 

  • D’Andrea AD, Haseltine WA (1978) Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. Proc Natl Acad Sci USA 75:3608–3612

    PubMed  Google Scholar 

  • Gier S, Johns WD (2000) Heavy metal-adsorption on micas and clay minerals studied by X-ray photoelectron spectroscopy. Appl Clay Sci 16:289–299

    Article  CAS  Google Scholar 

  • Guthold M, Bezanilla M, Erie DA, Jenkins B, Hansma HG, Bustamante C (1994) Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc Natl Acad Sci USA 91:12927–12931

    CAS  PubMed  Google Scholar 

  • Huang CH, Galvan L, Crooke ST (1980) Interactions of bleomycin analogues with deoxyribonucleic acid and metal ions studied by fluorescence quenching. Biochemistry 19:1761–1767

    CAS  PubMed  Google Scholar 

  • Koppelman MH, Dillard JD (1977) A study of the adsorption of Ni(II) and Cu(II) by clay minerals. Clay Clay Miner 73:457–462

    Google Scholar 

  • Li W, Xia C, Antholine WE, Petering DH (2001) Interactions of iron bleomycin, phosphate or cyanide, and DNA: sequence-dependent conformations and reactions. J Biol Inorg Chem 6:618–627

    Article  CAS  PubMed  Google Scholar 

  • Li W, Antholine WE, Petering DH (2002) Kinetics of reaction of DNA-bound Fe(III)bleomycin with ascorbate: interplay of specific and non-specific binding. J Inorg Biochem 90:8–17

    Article  CAS  PubMed  Google Scholar 

  • Lloyd RS, Haidle CW, Robberson DL (1978) Bleomycin-specific fragmentation of double-stranded DNA. Biochemistry 17:1890–1896

    CAS  PubMed  Google Scholar 

  • Lloyd RS, Haidle CW, Robberson DL (1979) Noncovalent intermolecular crosslinks are produced by bleomycin reaction with duplex DNA. Proc Natl Acad Sci USA 76:2674–2678

    CAS  PubMed  Google Scholar 

  • Lönn U, Lönn S, Nylen U, Windblad G (1990) Bleomycin-induced DNA lesions are dependent on nucleosome repeat length. Biochem Pharmacol 39:101–107

    Article  PubMed  Google Scholar 

  • Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A (1995) Atomic force microscopy of nucleoprotein complexes. Scanning Microscopy 9:705–724

    CAS  PubMed  Google Scholar 

  • Nagami F, Zuccheri G, Samori B, Kuroda R (2002) Time-lapse imaging of conformational changes in supercoiled DNA by scanning force microscopy. Anal Biochem 300:170–176

    Article  CAS  PubMed  Google Scholar 

  • van Noort SJ, van der Werf KO, Eker AP, Wyman C, de Grooth BG, van Hulst NF, Greve J (1998) Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. Biophys J 74:2840–2849

    PubMed  Google Scholar 

  • Pashley RM, Israelachvili JN (1984) DLVO and hybridation forces between mica surfaces in Mg2+, Ca2+, Sr2+ and Ba2+ chloride solutions. J Colloid Interf Sci 97:446–455

    Article  CAS  Google Scholar 

  • Pastré D, Piétrement O, Fusil S, Landousy F, Jeusset J, David MO, Hamon L, Le Cam E, Zozime A (2003) Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study. Biophys J 85:2507–2518

    PubMed  Google Scholar 

  • Petering DH, Byrnes RW, Antholine WE (1990) The role of redox-active metals in the mechanism of action of bleomycin. Chem Biol Interact 73:133–182

    Article  CAS  PubMed  Google Scholar 

  • Piétrement O, Pastré D, Fusil S, Jeusset J, David M-O, Landousy F, Hamon L, Zozime A, Le Cam E (2003) Reversible binding of DNA on NiCl2 treated mica by varying the ionic strength. Langmuir 19:2536–2539

    Article  Google Scholar 

  • Pope LH, Davies MC, Laughton CA, Roberts CJ, Tendler SJ, Williams PM (2000) Atomic force microscopy studies of intercalation-induced changes in plasmid DNA tertiary structure. J Microsc 199:68–78

    Article  CAS  PubMed  Google Scholar 

  • Povirk LF, Goldberg IH (1983) Stoichiometric uptake of molecular oxygen and consumption of sulfhydryl groups by neocarzinostatin chromophore bound to DNA. J Biol Chem 258:11763–11767

    CAS  PubMed  Google Scholar 

  • Povirk LF, Houlgrave CW (1988) Effect of apurinic/apyrimidinic endonucleases and polyamines on DNA treated with bleomycin and neocarzinostatin: specific formation and cleavage of closely opposed lesions in complementary strands. Biochemistry 27:3850–3857

    CAS  PubMed  Google Scholar 

  • Revet B, Fourcade A (1998) Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopies. Nucleic Acids Res 26:2092–2097

    Article  CAS  PubMed  Google Scholar 

  • Rouzina I, Bloomfield VA (1996a) Competitive electrostatic binding of charged ligands to polyelectrolytes: planar and cylindrical geometries. J Phys Chem 100:4292–4304

    Article  CAS  Google Scholar 

  • Rouzina I, Bloomfield VA (1996b) Influence of ligand spatial organization on competitive electrostatic binding to DNA. J Phys Chem 100:4305–4313

    Article  CAS  Google Scholar 

  • Sakai TT, Riordan JM, Glickson JD (1983) Bleomycin interactions with DNA. Studies on the role of the C-terminal cationic group of bleomycin A2 in association with and degradation of DNA. Biochim Biophys Acta 758:176–180

    CAS  PubMed  Google Scholar 

  • Smith BL, Bauer GB, Povirk LF (1994) DNA damage induced by bleomycin, neocarzinostatin, and melphalan in a precisely positioned nucleosome. Asymmetry in protection at the periphery of nucleosome-bound DNA. J Biol Chem 269:30587–30594

    CAS  PubMed  Google Scholar 

  • Steighner RJ, Povirk LF (1990) Bleomycin-induced DNA lesions at mutational hot spots: implications for the mechanism of double-strand cleavage. Proc Natl Acad Sci USA 87:8350–8354

    CAS  PubMed  Google Scholar 

  • Sugiyama H, Morii T, Saito I, Matsuura T, Hecht SM (1986) Structure and chemistry of alkali-labile product formed during Fe(II)-bleomycin-mediated DNA strand scission. Nucleic Acids Symp Ser 17:165–166

    CAS  PubMed  Google Scholar 

  • Takeshita M, Grollman AP, Horwitz SB (1976) Effect of ATP and other nucleotides on the bleomycin-induced degradation of vaccinia virus DNA. Virology 69:453–463

    Article  CAS  PubMed  Google Scholar 

  • Takeshita M, Grollman AP, Ohtsubo E, Ohtsubo H (1978) Interaction of bleomycin with DNA. Proc Natl Acad Sci USA 75:5983–5987

    CAS  PubMed  Google Scholar 

  • Utsuno K, Tsuboi M, Katsumata S, Iwamoto T (2001) Viewing of complex molecules of ethidium bromide and plasmid DNA in solution by atomic force microscopy. Chem Pharm Bull 49:413–417

    Article  CAS  PubMed  Google Scholar 

  • Utsuno K, Tsuboi M, Katsumata S, Iwamoto T (2002) Visualization of complexes of Hoechst 33258 and DNA duplexes in solution by atomic force microscopy. Chem Pharm Bull 50:216–219

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Piétrement.

Additional information

Olivier Piétrement and David Pastré have contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piétrement, O., Pastré, D., Landousy, F. et al. Studying the effect of a charged surface on the interaction of bleomycin with DNA using an atomic force microscope. Eur Biophys J 34, 200–207 (2005). https://doi.org/10.1007/s00249-004-0443-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0443-y

Keywords

Navigation