Skip to main content
Log in

Structured illumination microscopy of a living cell

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Due to diffraction, the resolution of imaging emitted light in a fluorescence microscope is limited to about 200 nm in the lateral direction. Resolution improvement by a factor of two can be achieved using structured illumination, where a fine grating is projected onto the sample, and the final image is reconstructed from a set of images taken at different grating positions. Here we demonstrate that with the help of a spatial light modulator, this technique can be used for imaging slowly moving structures in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2a–c
Fig. 3

Similar content being viewed by others

References

  • Amodaj N, Stuurman N (2006–2009) μManager. http://micro-manager.org/

  • Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306:1370–1373

    Article  PubMed  CAS  Google Scholar 

  • Bailey B, Farkas DL, Taylor DL, Lanni F (1993) Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 366:44–48

    Article  PubMed  CAS  Google Scholar 

  • Bates M, Blosser TR, Zhuang X (2005) Short-range spectroscopic ruler based on a single-molecule optical switch. Phys Rev Lett 94:101–108

    Article  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645

    Article  PubMed  CAS  Google Scholar 

  • Donnert G, Keller J, Medda R, Andrei MA, Rizzoli SO, Lührmann R, Jahn R, Eggeling C, Hell SW (2006) Macromolecular-scale resolution in biological fluorescence microscopy. Proc Natl Acad Sci USA 103(31):11440–11445

    Article  PubMed  CAS  Google Scholar 

  • Failla AV, Spoeri U, Albrecht B, Kroll A, Cremer C (2002) Nanosizing fluorescent objects by spatially modulated illumination microscopy. Appl Opt 41(34):7275–7283

    Article  PubMed  Google Scholar 

  • Geisler C, Schönle A, von Middendorff C, Bock H, Eggeling C, Egner A, Hell SW (2007) Resolution of λ/10 in fluorescence microscopy using fast single molecule photo-switching. Appl Phys A 88:223–226

    Article  CAS  Google Scholar 

  • Gustafsson MGL (2000) Surpassing the lateral resolution limit by a factor of two using stuctured illumination microscopy. J Microsc 198:82–87

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci USA 102(37):13081–13086

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson MGL, Shao L, Carlton PM, Wang CJR, Golubovskaya IN, Cande WZ, Agard DA, Sedat JW (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970

    Article  PubMed  CAS  Google Scholar 

  • Heilemann M, Margeat E, Kasper R, Sauer M, Tinnefeld P (2005) Carbocyanine dyes as efficient reversible single-molecule optical switch. J Am Chem Soc 127:3801–3806

    Article  PubMed  CAS  Google Scholar 

  • Heintzmann R (2003) Saturated patterned excitation microscopy with two-dimensional excitation patterns. Micron 34:283–291

    Article  PubMed  Google Scholar 

  • Heintzmann R, Cremer C (1998) Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. Proc SPIE 3568:185–195

    Article  Google Scholar 

  • Heintzmann R, Jovin TM, Cremer C (2002) Saturated patterned excitation microscopy—a concept for optical resolution improvement. J Opt Soc Am A 19(8):1599–1609

    Article  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  Google Scholar 

  • Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen L, Mandula O, Wicker K, Heintzmann R (2008) Structured illumination microscopy using photoswitchable fluorescent proteins. Proc SPIE 6861:68610L

    Article  Google Scholar 

  • Huang B, Jones SA, Brandenburg B, Zhuang X (2008) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5(12):1047–1052

    Article  PubMed  CAS  Google Scholar 

  • Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    Article  PubMed  CAS  Google Scholar 

  • Kner P, Chhun BB, Griffis E, Winoto L, Gustafsson MGL (2009) Super-resolution video microscopy of live cells by structured illumination. Nat Methods 6(5):339–342

    Article  PubMed  CAS  Google Scholar 

  • Lemmer P, Gunkel M, Baddeley D, Kaufmann R, Urich A, Weiland Y, Reymann J, Müller P, Hausmann M, Cremer C (2008) SPDM: light microscopy with single-molecule resolution at the nanoscale. Appl Phys B93:1–12

    Google Scholar 

  • Lidke KA, Rieger B, Jovin TM, Heintzmann R (2005) Superresolution by localization of quantum dots using blinking statistics. Opt Exp 13(18):7052–7062

    Article  Google Scholar 

  • Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao XN, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275:25879–25882

    Article  PubMed  CAS  Google Scholar 

  • Mandula O (2008) Patterned excitation microscopy. Master’s Thesis, Charles University, Prague

  • Niemeyer P (2008) Beanshell. http://www.beanshell.org/

  • Pham TQ, Bezuijen M, van Vliet LJ, Schutte K, Luengo Hendriks CL (2005) Performance of optimal registration estimators. In: Rahman Z, Schowengerdt RA, Reichenbach SE (eds) Visual information processing XIV, Orlando, FL, USA. Proceedings of SPIE, vol. 5817, pp 133–144.

  • Rittweger E, Han KY, Irvine SE, Eggeling C, Hell SW (2009) STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3:144–147

    Article  CAS  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    Article  PubMed  CAS  Google Scholar 

  • Sabanayagam CR, Eid JS, Meller A (2005) Long time scale blinking kinetics of cyanine fluorophores conjugated to DNA and its effect on Förster resonance energy transfer. J Chem Phys 123:224–708

    Article  Google Scholar 

  • Schrader M, Meinecke F, Bahlmann K, Kroug M, Cremer C, Soini E, Hell SW (1995) Monitoring the excited state of a fluorophore in a microscope by stimulated emission. Bioimaging 3:147–153

    Article  CAS  Google Scholar 

  • Shao L, Isaac B, Uzawa S, Agard DA, Sedat JW, Gustafsson MGL (2008) I5S: wide-field light microscopy with 100-nm-scale resolution in three dimensions. Biophys J 94:4971–4983

    Article  PubMed  CAS  Google Scholar 

  • Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    Article  PubMed  CAS  Google Scholar 

  • Stuurman N, Amodaj N, Vale R (2007) μManager: open source software for light microscope imaging. Microsc Today 15:42–43

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Medical Research Council, Carl Zeiss MicroImaging GmbH and the International Agency for Atomic Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Heintzmann.

Additional information

This article has been submitted as a contribution to the Festschrift entitled “Uncovering cellular sub-structures by light microscopy” in honour of Professor Cremer’s 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirvonen, L.M., Wicker, K., Mandula, O. et al. Structured illumination microscopy of a living cell. Eur Biophys J 38, 807–812 (2009). https://doi.org/10.1007/s00249-009-0501-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0501-6

Keywords

Navigation