Skip to main content
Log in

Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Multidomain proteins in which consecutive globular regions are connected by linkers are prevalent in nature (Levitt in Proc Natl Acad Sci USA 106:11079–11084, 2009). Some members of this family have largely resisted structural characterization as a result of challenges associated with their inherent flexibility. Small-angle scattering (SAS) is often the method of choice for their structural study. An extensive set of simulated data for both flexible and rigid multidomain systems was analyzed and modeled using standard protocols. This study clearly shows that SAXS profiles obtained from highly flexible proteins can be wrongly interpreted as arising from a rigid structure. In this context, it would be important to identify features from the SAXS data or from the derived structural models that indicate interdomain motions to differentiate between these two scenarios. Features of SAXS data that identify flexible proteins are: (1) general attenuation of fine structure in the scattering profiles, which becomes more dramatic in Kratky representations, and (2) a reduced number of interdomain correlation peaks in p(r) functions that also present large D max values and a smooth decrease to 0. When modeling this dynamically averaged SAXS data, the structures obtained present characteristic trends: (1) ab initio models display a decrease in resolution, and (2) rigid-body models present highly extended conformations with a lack of interdomain contacts. The ensemble optimization method represents an excellent strategy to identify interdomain motions unambiguously. This study provides information that should help researchers to select the best modeling strategy for the structural interpretation of SAS experiments of multidomain proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bernadó P, Blanchard L, Timmins P, Marion D, Ruigrok RWH, Blackledge M (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering. Proc Natl Acad Sci USA 102:17002–17007

    Article  PubMed  Google Scholar 

  • Bernadó P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129:5656–5664

    Article  PubMed  Google Scholar 

  • Bernadó P, Pérez Y, Svergun DI, Pons M (2008) Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. J Mol Biol 376:492–505

    Article  PubMed  Google Scholar 

  • Bertini I, Calderone V, Fragai M, Jaiswal R, Luchinat C, Melikian M, Mylonas E, Svergun DI (2008) Evidence of reciprocal reorientation of the catalytic and hemopexin-like domains of full-length MMP-12. J Am Chem Soc 130:7011–7021

    Article  CAS  PubMed  Google Scholar 

  • Bertini I, Fragai M, Luchinat C, Melikian M, Mylonas E, Sarti Svergun DI (2009) Interdomain flexibility in full-length matrix metalloproteinase-1 (MMP-1). J Biol Chem 284:12821–12828

    Article  CAS  PubMed  Google Scholar 

  • Braddock DT, Louis JM, Baber JL, Levens D, Clore GM (2002) Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415:1051–1056

    Article  CAS  PubMed  Google Scholar 

  • Bron P, Giudice E, Rolland JP, Buey RM, Barbier P, Díaz JF, Peyrot V, Thomas D, Garnier C (2008) Apo-Hsp90 coexists in two open conformational states in solution. Biol Cell 100:413–425

    Article  CAS  PubMed  Google Scholar 

  • Doniach S (2001) Changes in biomolecular conformation seen by small angle X-ray scattering. Chem Rev 101:1763–1778

    Article  CAS  PubMed  Google Scholar 

  • Dunker AK, Bown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Article  CAS  PubMed  Google Scholar 

  • Edwards RA, Lee MS, Tsutakawa SE, Williams RS, Tainer JA, Glover JNM (2008) The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50. Biochemistry 47:11446–11456

    Article  CAS  PubMed  Google Scholar 

  • Ekman D, Björklund ÅK, Frey-Skött J, Elofsson A (2005) Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J Mol Biol 348:231–243

    Article  CAS  PubMed  Google Scholar 

  • Fetler L, Kantrowitz ER, Vachette P (2007) Direct observation in solution of a preexisting structural equilibrium for a mutant of the allosteric aspartate transcarbamoylase. Proc Natl Acad Sci USA 104:495–500

    Article  CAS  PubMed  Google Scholar 

  • Gabel F, Simon B, Nilges M, Petoukhov MV, Svergun DI, Sattler M (2008) A structure refinement protocol combining NMR residual dipolar couplings and small angle scattering restraints. J Biomol NMR 41:199–208

    Article  CAS  PubMed  Google Scholar 

  • Grela P, Bernadó P, Svergun DI, Kwiatowski J, Abramczyk D, Grankowski N, Tchórzewski M (2008) Structural relationships among the ribosomal stalk proteins from the three domains of life. J Mol Evol 67:154–167

    Article  CAS  PubMed  Google Scholar 

  • Grishaev A, Wu J, Trewhella J, Bax A (2005) Refinement of multidomain protein structures by combination of solution small-angle X-ray scattering and NMR data. J Am Chem Soc 127:16621–16628

    Article  CAS  PubMed  Google Scholar 

  • Grishaev A, Tugarinov V, Kay LE, Trewhella J, Bax A (2008) Refined solution structure of the 82-kDa enzyme malate synthase G from joint NMR and synchrotron SAXS restraints. J Biomol NMR 40:95–106

    Article  CAS  PubMed  Google Scholar 

  • Hammel M, Fierobe HP, Czjzek M, Finet S, Receveur-Brechot V (2004) Structural insights into the mechanism of formation of cellulosomes probed by small angle X-ray scattering. J Biol Chem 279:55985–55994

    Article  CAS  PubMed  Google Scholar 

  • Hammel M, Fierobe HP, Czjzek M, Kurkal V, Smith JC, Bayer EA, Finet S, Receveur-Brechot V (2005) Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 280:38562–38568

    Article  CAS  PubMed  Google Scholar 

  • Heller WT (2005) Influence of multiple well defined conformations on small-angle scattering of proteins in solution. Acta Crystallogr D61:33–44

    CAS  Google Scholar 

  • Improta S, Krueger JK, Gautel M, Atkinson RA, Lefèvre JF, Moulton S, Trewhella J, Pastore A (1998) The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity. J Mol Biol 284:761–777

    Article  CAS  PubMed  Google Scholar 

  • Jacobs DM, Saxena K, Vogtherr M, Bernadó P, Pons M, Fiebig KM (2003) Peptide binding induces large scale changes in inter-domain mobility in human Pin1. J Biol Chem 278:26174–26182

    Article  CAS  PubMed  Google Scholar 

  • Kleywegt GJ (1997) Validation of protein models from Calpha coordinates alone. J Mol Biol 273:371–376

    Article  CAS  PubMed  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova A, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  • Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Crystallogr 34:33–41

    Article  CAS  Google Scholar 

  • Levitt M (2009) Nature of the protein universe. Proc Natl Acad Sci USA 106:11079–11084

    Article  CAS  PubMed  Google Scholar 

  • Lim WA (2002) The modular logic of signaling proteins: building allosteric switches from simple binding domains. Curr Opin Struct Biol 12:61–68

    Article  CAS  PubMed  Google Scholar 

  • Mareuil F, Sizun C, Perez J, Schoenauer M, Lallemand JY, Bontems F (2007) A simple genetic algorithm for the optimization of multidomain protein homology models driven by NMR residual dipolar coupling and small angle X-ray scattering data. Eur Biophys J 37:95–104

    Article  PubMed  Google Scholar 

  • Marino M, Zou P, Svergun DI, Garcia P, Edlich C, Simon B, Wilmanns M, Muhle-Goll C, Mayans O (2006) The Ig doublet Z1Z2: a model system for the hybrid analysis of conformational dynamics in Ig tandems from titin. Structure 14:1437–1447

    Article  CAS  PubMed  Google Scholar 

  • Márquez JA, Smith CIE, Petoukhov MV, Lo Surdo P, Mattson PT, Knekt M, Westlund A, Scheffzek K, Saraste M, Svergun DI (2003) Conformation of full-length Bruton tyrosine kinase (Btk) from synchrotron X-ray solution scattering. EMBO J 22:4616–4624

    Article  PubMed  Google Scholar 

  • Mulder FAA, Bouakaz L, Lundell A, Venkataramana M, Liljas A, Akke M, Sanyal S (2004) Conformation and dynamics of ribosomal stalk protein L12 in solution and on the ribosome. Biochemistry 43:5930–5936

    Article  CAS  PubMed  Google Scholar 

  • Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G, Kuriyan J (2006) Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell 21:787–798

    Article  CAS  PubMed  Google Scholar 

  • Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89:1237–1250

    Article  CAS  PubMed  Google Scholar 

  • Petoukhov MV, Svergun DI (2007) Analysis of X-ray and neutron scattering from biomacromolecular solutions. Curr Opin Struct Biol 17:562–571

    Article  CAS  PubMed  Google Scholar 

  • Petoukhov MV, Monie TP, Allain FHT, Matthews S, Curry S, Svergun DI (2006) Conformation of polypyrimidine tract binding protein in solution. Structure 14:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Pickford AR, Campbell ID (2004) NMR studies of modular protein structures and their interactions. Chem Rev 104:3557–3565

    Article  CAS  PubMed  Google Scholar 

  • Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40:191–285

    CAS  PubMed  Google Scholar 

  • Receveur V, Czjzek M, Schülein M, Panine P, Henrissat B (2002) Dimension, shape, and conformational flexibility of a two domain fungal cellulase in solution probed by small angle X-ray scattering. J Biol Chem 277:40887–40892

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallogr 28:768–773

    Article  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI, Koch MHJ (2002) Advances in structure analysis using small-angle scattering in solution. Curr Opin Struct Biol 12:654–660

    Article  CAS  PubMed  Google Scholar 

  • Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735–1782

    Article  CAS  Google Scholar 

  • Svergun DI, Barberato C, Koch MHJ (1995) CRYSOL—a program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr 28:768–773

    Article  CAS  Google Scholar 

  • Taraban M, Zhan H, Whitten AE, Langley DB, Mattews KS, Swint-Kruse L, Trewhella J (2008) Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. J Mol Biol 376:466–481

    Article  CAS  PubMed  Google Scholar 

  • Trewhella J, Blumenthal DK, Rokop SE, Seeger PA (1990) Small-angle scattering studies show distinct conformations of calmodulin in its complexes with two peptides based on the regulatory domain of the catalytic subunit of phosphorylase kinase. Biochemistry 29:9316–9324

    Article  CAS  PubMed  Google Scholar 

  • Tsutakawa SE, Hura GL, Frankel KA, Cooper PK, Tainer JA (2007) Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography. J Struct Biol 158:214–223

    Article  CAS  PubMed  Google Scholar 

  • VanOudenhove J, Anderson E, Krueger S, Cole JL (2009) Analysis of PKR structure by small-angle scattering. J Mol Biol 387:910–920

    Article  CAS  PubMed  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ (1987) Structure of ubiquitin refined at 1.8 A resolution. J Mol Biol 194:531–544

    Article  CAS  PubMed  Google Scholar 

  • Volkov VV, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr 36:860–864

    Article  CAS  Google Scholar 

  • von Castelmur E, Marino M, Svergun DI, Kreplak L, Ucurum-Fotiadis Z, Konarev PV, Urzhumtsev A, Labeit D, Mayans O (2008) A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain. Proc Natl Acad Sci USA 105:1186–1191

    Article  Google Scholar 

  • Zou P, Gautel M, Geerlof A, Wilmanns M, Koch MHJ, Svergun DI (2003) Solution scattering suggests cross-linking function of telehonin in the complex with titin. J Biol Chem 278:2636–2644

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Prof. Miquel Pons and Jascha Blobel (Institute for Research in Biomedicine, Barcelona), and Dr. Dmitri I. Svergun (EMBL-Hamburg) for insightful discussions. Tanya Yates is acknowledged for careful reading of the manuscript. Financial support form the Spanish Ministry of Education-FEDER (BIO2007-63458) is gratefully acknowledged. The author holds a Ramón y Cajal contract that is partially financed by the Spanish Ministry of Education and by funds provided to the Institute for Research in Biomedicine by the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pau Bernadó.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2528 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernadó, P. Effect of interdomain dynamics on the structure determination of modular proteins by small-angle scattering. Eur Biophys J 39, 769–780 (2010). https://doi.org/10.1007/s00249-009-0549-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0549-3

Keywords

Navigation