Skip to main content
Log in

Ionizable side chains at catalytic active sites of enzymes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Catalytic active sites of enzymes of known structure can be well defined by a modern program of computational geometry. The CASTp program was used to define and measure the volume of the catalytic active sites of 573 enzymes in the Catalytic Site Atlas database. The active sites are identified as catalytic because the amino acids they contain are known to participate in the chemical reaction catalyzed by the enzyme. Acid and base side chains are reliable markers of catalytic active sites. The catalytic active sites have 4 acid and 5 base side chains, in an average volume of 1,072 Å3. The number density of acid side chains is 8.3 M (in chemical units); the number density of basic side chains is 10.6 M. The catalytic active site of these enzymes is an unusual electrostatic and steric environment in which side chains and reactants are crowded together in a mixture more like an ionic liquid than an ideal infinitely dilute solution. The electrostatics and crowding of reactants and side chains seems likely to be important for catalytic function. In three types of analogous ion channels, simulation of crowded charges accounts for the main properties of selectivity measured in a wide range of solutions and concentrations. It seems wise to use mathematics designed to study interacting complex fluids when making models of the catalytic active sites of enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Antosiewicz J, McCammon JA, Gilson MK (1996) The determinants of pKas in proteins. Biochemistry 35(24):7819–7833. doi:10.1021/bi9601565

    Article  PubMed  CAS  Google Scholar 

  • Barthel J, Krienke H, Kunz W (1998) Physical chemistry of electrolyte solutions: modern aspects. Springer, New York

    Google Scholar 

  • Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook JD, Zardecki C (2002) The Protein Data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907. doi:10.1107/S0907444902003451

    Google Scholar 

  • Boda D, Giri J, Henderson D, Eisenberg B, Gillespie D (2011) Analyzing the components of the free-energy landscape in a calcium selective ion channel by Widom’s particle insertion method. J Chem Phys 134:055102–055114

    Article  PubMed  Google Scholar 

  • Boda D, Nonner W, Henderson D, Eisenberg B, Gillespie D (2008) Volume exclusion in calcium selective channels. Biophys J 94(9):3486–3496. doi:10.1529/biophysj.107.122796

    Article  PubMed  CAS  Google Scholar 

  • Boda D, Nonner W, Valisko M, Henderson D, Eisenberg B, Gillespie D (2007) Steric selectivity in Na channels arising from protein polarization and mobile side chains. Biophys J 93(6):1960–1980. doi:10.1529/biophysj.107.105478

    Article  PubMed  CAS  Google Scholar 

  • Boda D, Valisko M, Henderson D, Eisenberg B, Gillespie D, Nonner W (2009) Ionic selectivity in L-type calcium channels by electrostatics and hard-core repulsion. J Gen Physiol 133(5):497–509. doi:10.1085/jgp.200910211

    Article  PubMed  CAS  Google Scholar 

  • Bostick DL, Brooks CL 3rd (2009) Statistical determinants of selective ionic complexation: ions in solvent, transport proteins, and other “hosts”. Biophys J 96(11):4470–4492. doi:10.1016/j.bpj.2009.03.001

    Article  PubMed  CAS  Google Scholar 

  • Cannon JJ, Tang D, Hur N, Kim D (2010) Competitive entry of sodium and potassium into nanoscale pores. J Phys Chem B 114(38):12252–12256. doi:10.1021/jp104609d

    Article  PubMed  CAS  Google Scholar 

  • Cohen EJ, Edsall J (1943) Proteins, amino acids, and peptides. Reinhold, New York

    Google Scholar 

  • Cojocaru V, Balali-Mood K, Sansom MS, Wade RC (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7(8):e1002152. doi:10.1371/journal.pcbi.1002152

    Article  PubMed  CAS  Google Scholar 

  • Connolly ML (1985) Computation of molecular volume. J Am Chem Soc 107(5):1118–1124. doi:10.1021/ja00291a006

    Article  CAS  Google Scholar 

  • Davis ME, McCammon JA (1990) Electrostatics in biomolecular structure and dynamics. Chem Rev 90:509–521

    Article  CAS  Google Scholar 

  • Dixon M, Webb EC (1979) Enzymes. Academic Press, New York

    Google Scholar 

  • Doi M (2009) Gel dynamics. J Phys Soc Jpn 78:052001

    Article  Google Scholar 

  • Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(suppl 2):W116–W118

    Article  PubMed  CAS  Google Scholar 

  • Durand-Vidal S, Simonin J-P, Turq P (2000) Electrolytes at interfaces. Kluwer, Boston

    Google Scholar 

  • Durand-Vidal S, Turq P, Bernard O, Treiner C, Blum L (1996) New perspectives in transport phenomena in electrolytes. Phys A 231:123–143

    Article  CAS  Google Scholar 

  • Edelsbrunner H, Facello M, Fu P, Liang J (1995) Measuring proteins and voids in proteins. Syst Sci Proc Twenty-Eighth Hawaii Int Conf Syst Sci 5:256–264. doi:10.1109/HICSS.1995.375331

    Google Scholar 

  • Edelsbrunner H, Facello M, Liang J (1998) On the definition and the construction of pockets in macromolecules. Discret Appl Math 88:83–102

    Article  Google Scholar 

  • Edsall J, Wyman J (1958) Biophysical chemistry. Academic Press, NY

    Google Scholar 

  • Eisenberg B (2005) Living transistors: a physicist’s view of ion channels. Available on http://arxiv.org/. p 24 as q-bio/0506016v2

  • Eisenberg B (2010) Multiple scales in the simulation of ion channels and proteins. J Phys Chem C 114(48):20719–20733. doi:10.1021/jp106760t

    Article  CAS  Google Scholar 

  • Eisenberg B (2011a) Crowded charges in ion channels. In: Advances in chemical physics. Wiley, New York, pp 77–223 also available at http://arXiv.orgas arXiv 1009.1786v1001 doi:10.1002/9781118158715.ch2

  • Eisenberg B (2011b) Life’s solutions are not ideal. Posted on arXivorg with Paper ID arXiv:11050184v1

  • Eisenberg B (2011c) Mass action in ionic solutions. Chem Phys Lett 511:1–6. doi:10.1016/j.cplett.2011.05.037

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg B (2012) Ions in fluctuating channels: transistors alive. fluctuations and noise letters (in the press): Earlier version ‘Living transistors: a physicist’s view of ion channels’. Available on http://arxiv.org/ as q-bio/0506016v0506012

  • Eisenberg B, Hyon Y, Liu C (2010) Energy variational analysis EnVarA of ions in water and channels: field theory for primitive models of complex ionic fluids. J Chem Phys 133:104104

    Article  PubMed  Google Scholar 

  • Eisenberg RS (1990) Channels as enzymes: oxymoron and tautology. J Membr Biol 115:1–12. Available on arXiv as http://arxiv.org/abs/1112.2363

    Google Scholar 

  • Eisenberg RS (1996a) Atomic biology, electrostatics and ionic channels. In: Elber R (ed) New developments and theoretical studies of proteins, vol 7. World Scientific, Philadelphia, pp 269–357. Published in the physics ArXiv as arXiv:0807.0715

  • Eisenberg RS (1996b) Computing the field in proteins and channels. J Membr Biol 150:1–25. Also available on http://arxiv.org as arXiv 1009.2857

    Google Scholar 

  • Ellinor PT, Yang J, Sather WA, Zhang J-F, Tsien R (1995) Ca2+ channel selectivity at a single locus for high-affinity Ca2+ interactions. Neuron 15:1121–1132

    Article  PubMed  CAS  Google Scholar 

  • Fawcett WR (2004) Liquids, solutions, and interfaces: from classical macroscopic descriptions to modern microscopic details. Oxford University Press, New York

    Google Scholar 

  • Fischer E (1894a) Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der deutschen chemischen Gesellschaft 27:2985–2993

  • Fischer E (1894b) Einfluss der Configuration auf die Wirkung der Enzyme. II. Berichte der deutschen chemischen Gesellschaft 27:3479–3483

  • Fraenkel D (2010a) Monoprotic mineral acids analyzed by the smaller-ion shell model of strong electrolyte solutions. J Phys Chem B 115(3):557–568. doi:10.1021/jp108997f

    Article  PubMed  Google Scholar 

  • Fraenkel D (2010b) Simplified electrostatic model for the thermodynamic excess potentials of binary strong electrolyte solutions with size-dissimilar ions. Mol Phys 108(11):1435–1466

    Article  CAS  Google Scholar 

  • Friedman HL (1981) Electrolyte solutions at equilibrium. Annu Rev Phys Chem 32(1):179–204. doi:10.1146/annurev.pc.32.100181.001143

    Article  CAS  Google Scholar 

  • Fuoss RM, Accascina F (1959) Electrolytic conductance. Interscience, New York

    Google Scholar 

  • Fuoss RM, Onsager L (1955) Conductance of strong electrolytes at finite dilutions. Proc Nat Acad Sci USA 41(5):274–283

    Article  PubMed  CAS  Google Scholar 

  • Gillespie D, Giri J, Fill M (2009) Reinterpreting the anomalous mole fraction effect. the ryanodine receptor case study. Biophys J 97(8):2212–2221

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge A, Thornton JM (2005) Understanding nature’s catalytic toolkit. Trends Biochem Sci 30(11):622–629. doi:10.1016/j.tibs.2005.09.006

    Article  PubMed  CAS  Google Scholar 

  • Hansen J-P, McDonald IR (2006) Theory of simple liquids, 3rd edn. Academic Press, New York

    Google Scholar 

  • Helfferich F (1962 (1995 reprint)) Ion exchange. McGraw Hill reprinted by Dover, New York

  • Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Honig B, Nichols A (1995) Classical electrostatics in biology and chemistry. Science 268:1144–1149

    Article  PubMed  CAS  Google Scholar 

  • Hovarth AL (1985) Handbook of aqueous electrolyte solutions: physical properties, estimation, and correlation methods. Ellis Horwood, New York

    Google Scholar 

  • Howard JJ, Perkyns JS, Pettitt BM (2010) The behavior of ions near a charged wall-dependence on ion size, concentration, and surface charge. J Phys Chem B 114(18):6074–6083. doi:10.1021/jp9108865

    Article  PubMed  CAS  Google Scholar 

  • Howe RT, Sodini CG (1997) Microelectronics: an integrated approach. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hünenberger PH, Reif M (2011) Single-ion solvation. RSC Publishing, Cambridge

    Google Scholar 

  • Hyon Y, Kwak DY, Liu C (2010) Energetic variational approach in complex fluids: maximum dissipation principle. Available at http://www.ima.umn.edu as IMA Preprint Series # 2228 26 (4: April):1291–1304. Available at http://www.ima.umn.edu as IMA Preprint Series # 2228

  • Justice J-C (1983) Conductance of electrolyte solutions. In: Conway BE, Bockris JOM, Yaeger E (eds) Comprehensive treatise of electrochemistry. Thermondynbamic and transport properties of aqueous and molten electrolytes, vol 5. Plenum, New York, pp 223–338

    Google Scholar 

  • Kalyuzhnyi YV, Vlachy V, Dill KA (2010) Aqueous alkali halide solutions: can osmotic coefficients be explained on the basis of the ionic sizes alone? Phys Chem Chem Phys 12(23):6260–6266

    Article  PubMed  CAS  Google Scholar 

  • Koch SE, Bodi I, Schwartz A, Varadi G (2000) Architecture of Ca(2+) channel pore-lining segments revealed by covalent modification of substituted cysteines. J Biol Chem 275(44):34493–34500. doi:10.1074/jbc.M005569200

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Pettitt BM (2007) Preferential solvation in urea solutions at different concentrations: properties from simulation studies. J Phys Chem B 111(19):5233–5242. doi:10.1021/jp067659x

    Article  PubMed  CAS  Google Scholar 

  • Kokubo H, Rosgen J, Bolen DW, Pettitt BM (2007) Molecular basis of the apparent near ideality of urea solutions. Biophys J 93(10):3392–3407. doi:10.1529/biophysj.107.114181

    Article  PubMed  CAS  Google Scholar 

  • Kontogeorgis GM, Folas GK (2009) Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories. Wiley, New York. doi:10.1002/9780470747537.ch15

  • Kornyshev AA (2007) Double-layer in ionic liquids: paradigm change? J Phys Chem B 111(20):5545–5557

    Article  PubMed  CAS  Google Scholar 

  • Kunz W (2009) Specific ion effects. World Scientific Singapore, Singapore

    Book  Google Scholar 

  • Kyte J (1995) Mechanism in protein chemistry. Garland, New York

    Google Scholar 

  • Lee LL (2008) Molecular thermodynamics of electrolyte solutions. World Scientific Singapore, Singapore

    Google Scholar 

  • Li B (2009) Continuum electrostatics for ionic solutions with non-uniform ionic sizes. Nonlinearity 22(4):811

    Article  Google Scholar 

  • Liang J, Dill KA (2001) Are proteins well-packed? Biophys J 81(2):751–766

    Article  PubMed  CAS  Google Scholar 

  • Liang J, Edelsbrunner H, Woodward C (1998) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  PubMed  CAS  Google Scholar 

  • Linderstrom-Lang K (1924) On the ionisation of proteins. Compt Rend Trav Lab Carlsberg (ser chimie) 15(7):1–29

    Google Scholar 

  • Liu C (2009) An introduction of elastic complex fluids: an energetic variational approach. In: Hou TY, Liu C, Liu JG (eds) Multi-scale phenomena in complex fluids: modeling, analysis and numerical simulations. World Scientific Publishing Company, Singapore

    Google Scholar 

  • Ludemann SK, Lounnas V, Wade RC (2000a) How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303(5):797–811. doi:10.1006/jmbi.2000.4154

    Article  PubMed  CAS  Google Scholar 

  • Ludemann SK, Lounnas V, Wade RC (2000b) How do substrates enter and products exit the buried active site of cytochrome P450cam? 2. Steered molecular dynamics and adiabatic mapping of substrate pathways. J Mol Biol 303(5):813–830. doi:10.1006/jmbi.2000.4155

    Article  PubMed  CAS  Google Scholar 

  • Markowich PA, Ringhofer CA, Schmeiser C (1990) Semiconductor equations. Springer-Verlag, New York

    Book  Google Scholar 

  • McCleskey EW (2000) Ion channel selectivity using an electric stew. Biophys J 79(4):1691–1692

    Article  PubMed  CAS  Google Scholar 

  • Miedema H, Meter-Arkema A, Wierenga J, Tang J, Eisenberg B, Nonner W, Hektor H, Gillespie D, Meijberg W (2004) Permeation properties of an engineered bacterial OmpF porin containing the EEEE-locus of Ca2+ channels. Biophys J 87(5):3137–3147

    Article  PubMed  CAS  Google Scholar 

  • Miedema H, Vrouenraets M, Wierenga J, Gillespie D, Eisenberg B, Meijberg W, Nonner W (2006) Ca2+ selectivity of a chemically modified OmpF with reduced pore volume. Biophys J 91(12):4392–4400. doi:10.1529/biophysj.106.087114

    Article  PubMed  CAS  Google Scholar 

  • Nonner W, Gillespie D, Henderson D, Eisenberg B (2001) Ion accumulation in a biological calcium channel: effects of solvent and confining pressure. J Phys Chem B 105:6427–6436

    Article  CAS  Google Scholar 

  • Otyepka M, Skopalik J, Anzenbacherova E, Anzenbacher P (2007a) What common structural features and variations of mammalian P450 s are known to date? Biochim Biophys Acta 1770(3):376–389. doi:10.1016/j.bbagen.2006.09.013

    Article  PubMed  CAS  Google Scholar 

  • Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P (2007b) What common structural features and variations of mammalian P450s are known to date? Biochimica et Biophysica Acta (BBA)—Gen Subj 1770(3):376–389. doi:10.1016/j.bbagen.2006.09.013

    Article  CAS  Google Scholar 

  • Patwardhan VS, Kumar A (1993) Thermodynamic properties of aqueous solutions of mixed electrolytes: A new mixing rule. AIChE J 39(4):711–714

    Article  CAS  Google Scholar 

  • Pierret RF (1996) Semiconductor device fundamentals. Addison Wesley, New York

    Google Scholar 

  • Pitzer KS (1995) Thermodynamics, 3rd edn. McGraw Hill, New York

    Google Scholar 

  • Pohl HA (1978) Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields. Cambridge University Press, New York

    Google Scholar 

  • Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Nucleic Acids Res 32(suppl 1):D129–D133

    Article  PubMed  CAS  Google Scholar 

  • Pytkowicz RM (1979) Activity coefficients in electrolyte solutions, vol 1. CRC, Boca Raton

    Google Scholar 

  • Saranya N, Selvaraj S (2009) Variation of protein binding cavity volume and ligand volume in protein-ligand complexes. Bioorg Med Chem Lett 19(19):5769–5772. doi:10.1016/j.bmcl.2009.07.140

    Article  PubMed  CAS  Google Scholar 

  • Sather WA, McCleskey EW (2003) Permeation and selectivity in calcium channels. Annu Rev Physiol 65:133–159

    Article  PubMed  CAS  Google Scholar 

  • Segel IH (1993) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme, Systems edn. Wiley, Interscience, New York

    Google Scholar 

  • Sheng P, Zhang J, Liu C (2008) Onsager principle and electrorheological fluid dynamics. Prog Theoret Phys 175:131–143. doi:10.1143/PTPS.175.131

    Article  Google Scholar 

  • Siegler WC, Crank JA, Armstrong DW, Synovec RE (2010) Increasing selectivity in comprehensive three-dimensional gas chromatography via an ionic liquid stationary phase column in one dimension. J Chromatogr A 1217(18):3144–3149

    Article  PubMed  CAS  Google Scholar 

  • Spohr HV, Patey GN (2010) Structural and dynamical properties of ionic liquids: competing influences of molecular properties. J Chem Phys 132(15):154504–154512. doi:10.1063/1.3380830

    Article  PubMed  Google Scholar 

  • Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  • Tanford C (1957) Theory of protein titration curves. II. Calculations for simple models at low ionic strength. J Am Chem Soc 79(20):5340–5347. doi:10.1021/ja01577a002

    Article  CAS  Google Scholar 

  • Tanford C, Kirkwood JG (1957) Theory of protein titration curves. I. General equations for impenetrable spheres. J Am Chem Soc 79:5333–5339

    Article  CAS  Google Scholar 

  • Tanford C, Roxby R (1972) Interpretation of protein titration curves. application to lysozyme. Biochemistry 11(11):2192–2198. doi:10.1021/bi00761a029

    Article  PubMed  CAS  Google Scholar 

  • Tipton KF (1994) Enzyme nomenclature. Recommendations 1992. Eur J Biochem 223(1):1–5. doi:10.1111/j.1432-1033.1994.tb18960.x

    Article  PubMed  CAS  Google Scholar 

  • Torrie GM, Valleau A (1982) Electrical double layers: 4. limitations of the Gouy-Chapman Theory. J Phys Chem 86:3251–3257

    Article  CAS  Google Scholar 

  • Tosteson D (1989) Membrane transport: people and ideas. American Physiological Society, Bethesda

    Google Scholar 

  • Varma S, Rempe SB (2010) Multibody effects in ion binding and selectivity. Biophys J 99(10):3394–3401. doi:10.1016/j.bpj.2010.09.019

    Article  PubMed  CAS  Google Scholar 

  • Varma S, Rogers DM, Pratt LR, Rempe SB (2011) Perspectives on: ion selectivity: design principles for K+ selectivity in membrane transport. J Gen Physiol 137(6):479–488. doi:10.1085/jgp.201010579

    Article  PubMed  CAS  Google Scholar 

  • Vincze J, Valisko M, Boda D (2010) The nonmonotonic concentration dependence of the mean activity coefficient of electrolytes is a result of a balance between solvation and ion–ion correlations. J Chem Phys 133(15):154507–154508. doi:10.1063/1.3489418

    Article  PubMed  Google Scholar 

  • Voet D, Voet J (2004) Biochemistry, 3rd edn. Wiley, Hoboken

    Google Scholar 

  • Vrouenraets M, Wierenga J, Meijberg W, Miedema H (2006) Chemical modification of the bacterial porin OmpF: gain of selectivity by volume reduction. Biophys J 90(4):1202–1211

    Article  PubMed  CAS  Google Scholar 

  • Warshel A (1981) Calculations of enzymatic reactions: calculations of pKa, proton transfer reactions, and general acid catalysis reactions in enzymes. Biochemistry 20(11):3167–3177

    Article  PubMed  CAS  Google Scholar 

  • Warshel A, Russell ST (1984) Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys 17:283–422

    Article  PubMed  CAS  Google Scholar 

  • Warshel A, Sharma PK, Kato M, Xiang Y, Liu H, Olsson MHM (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106(8):3210–3235. doi:10.1021/cr0503106

    Article  PubMed  CAS  Google Scholar 

  • Wu XS, Edwards HD, Sather WA (2000) Side chain orientation in the selectivity filter of a voltage-gated Ca2+ channel. J Biol Chem 275:31778–31785

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Ellinor PT, Sather WA, Zhang JF, Tsien R (1993) Molecular determinants of Ca2+ selectivity and ion permeation in L-type Ca2+ channels. Nature 366:158–161

    Article  PubMed  CAS  Google Scholar 

  • Yu H, Noskov SY, Roux B (2009) Hydration number, topological control, and ion selectivity. J Phys Chem. doi:10.1021/jp901233v

    Google Scholar 

  • Zemaitis JF Jr, Clark DM, Rafal M, Scrivner NC (1986) Handbook of aqueous electrolyte thermodynamics. Design institute for physical property data. American Institute of Chemical Engineers, New York

    Book  Google Scholar 

  • Zhang C, Raugei S, Eisenberg B, Carloni P (2010) Molecular dynamics in physiological solutions: force fields, alkali metal ions, and ionic strength. J Chem Theory Comput 6(7):2167–2175. doi:10.1021/ct9006579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Jimenez-Morales was supported by Becas Talentia Excellence Grant (Andalusian Ministry of Innovation, Science and Enterprise, Junta de Andalucia, Spain) and funding from Dr. Liang’s laboratory. Dr. Liang is supported by the NIH GM079804 and GM086145, and the NSF DBI 1062328 and DMS-0800257. Dr. Eisenberg was supported by NIH GM076013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bob Eisenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez-Morales, D., Liang, J. & Eisenberg, B. Ionizable side chains at catalytic active sites of enzymes. Eur Biophys J 41, 449–460 (2012). https://doi.org/10.1007/s00249-012-0798-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-012-0798-4

Keywords

Navigation