Skip to main content

Advertisement

Log in

The pattern of clinical breast cancer metastasis correlates with a single nucleotide polymorphism in the C1qA component of complement

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Complement is one of primary defense mechanisms against intravascular microorganisms and could play a role in the immune response to malignancy and hence its clinical behavior. We evaluated if the sole coding polymorphism of C1qA associates with outcome in patients with breast carcinoma. Genotyping for C1qA[276A/G] was performed in 63 breast cancer subjects with localized tumor and compared with that in 38 breast cancer subjects with metastasis. Established risk factors for clinical outcome were considered and evaluated in multivariable analysis. Breast cancer subjects with heterozygous or homozygous C1qA[276G] genotype had a higher rate of metastasis than subjects with the homozygous C1qA[276A] genotype [hazard ratio (HR) 2.4, 95% confidence interval (CI) 1.1–4.1]. This association was stronger when only metastatic sites associated with hematogenous spread, i.e., to the bone, liver, and brain, were considered (HR 3.5, 95% CI 1.4–5.6) and remained statistically significant after adjustment for the number of positive lymph nodes, estrogen receptor status, and progesterone receptor status. There was no statistical difference in the C1qA[276A/G] allelic distribution between all subjects with breast cancer and controls. These results suggest there could be an association of a single nucleotide polymorphism at position 276 of the C1qA component of complement with breast cancer metastasis to sites linked to hematogenous spread of disease. The C1qA polymorphism associated with decreased distant metastasis has also been correlated with an increased incidence of subcutaneous systemic lupus and C1q deficiencies, suggesting that an altered immune response may play a role in the observed association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abu-Shakra M, Buskila D, Ehrenfeld M, Conrad K, Shoenfeld Y (2001) Cancer and autoimmunity: autoimmune and rheumatic features in patients with malignancies. Ann Rheum Dis 60:433–441

    Article  PubMed  CAS  Google Scholar 

  • Baldwin WM III, Qian Z, Wasowska B, Sanfilippo F (1999) Complement causes allograft injury by cell activation rather than lysis. Transplantation 67:1498–1499

    Article  PubMed  Google Scholar 

  • Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550

    Article  PubMed  CAS  Google Scholar 

  • Boedefeld WM II, Bland KI, Heslin MJ (2003) Recent insights into angiogenesis, apoptosis, invasion, and metastasis in colorectal carcinoma. Ann Surg Oncol 10:839–851

    Article  PubMed  Google Scholar 

  • Caragine TA, Okada N, Frey AB, Tomlinson S (2002) A tumor-expressed inhibitor of the early but not late complement lytic pathway enhances tumor growth in a rat model of human breast cancer. Cancer Res 62:1110–1115

    PubMed  CAS  Google Scholar 

  • Carlini DB, Chen Y, Stephan W (2001) The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics 159:623–633

    PubMed  CAS  Google Scholar 

  • Conrad K (2000) Autoantibodies in cancer patients and in persons with a higher risk of cancer development. Elsevier, Amsterdam

    Google Scholar 

  • Cox DR (1972) Regression models and life tables (with discussion). J R Stat Soc B 34:187–220

    Google Scholar 

  • Duan J, Wainwright MS, Comeron JM, Saitou N, Sanders AR, Gelernter J, Gejman PV (2003) Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor. Hum Mol Genet 12:205–216

    Article  PubMed  CAS  Google Scholar 

  • Eccles SA (2001) Monoclonal antibodies targeting cancer: ‘magic bullets’ or just the trigger? Breast Cancer Res 3:86–90

    Article  PubMed  CAS  Google Scholar 

  • Emmert S, Schneider TD, Khan SG, Kraemer KH (2001) The human XPG gene: gene architecture, alternative splicing and single nucleotide polymorphisms. Nucleic Acids Res 29:1443–1452

    Article  PubMed  CAS  Google Scholar 

  • Erichsen HC, Chanock SJ (2004) SNPs in cancer research and treatment. Br J Cancer 90:747–751

    Article  PubMed  CAS  Google Scholar 

  • Fishelson Z, Donin N, Zell S, Schultz S, Kirschfink M (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40:109–123

    Article  PubMed  CAS  Google Scholar 

  • Gelderman KA, Tomlinson S, Ross GD, Gorter A (2004) Complement function in mAb-mediated cancer immunotherapy. Trends Immunol 25:158–164

    Article  PubMed  CAS  Google Scholar 

  • Golay J, Zaffaroni L, Vaccari T, Lazzari M, Borleri GM, Bernasconi S, Tedesco F, Rambaldi A, Introna M (2000) Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 95:3900–3908

    PubMed  CAS  Google Scholar 

  • Hakulinen J, Meri S (1998) Complement-mediated killing of microtumors in vitro. Am J Pathol 153:845–855

    PubMed  CAS  Google Scholar 

  • Hansen MH, Ostenstad B, Sioud M (2001) Antigen-specific IgG antibodies in stage IV long-time survival breast cancer patients. Mol Med 7:230–239

    PubMed  CAS  Google Scholar 

  • Harjunpaa A, Junnikkala S, Meri S (2000) Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 51:634–641

    Article  PubMed  CAS  Google Scholar 

  • Jager D, Jager E, Knuth A (2001) Immune responses to tumour antigens: implications for antigen specific immunotherapy of cancer. J Clin Pathol 54:669–674

    PubMed  CAS  Google Scholar 

  • Jurianz K, Maslak S, Garcia-Schuler H, Fishelson Z, Kirschfink M (1999) Neutralization of complement regulatory proteins augments lysis of breast carcinoma cells targeted with rhumAb anti-HER2. Immunopharmacology 42:209–218

    Article  PubMed  CAS  Google Scholar 

  • Kaplan E, Meier P (1958) Nonparametric estimation from incomplete observations. J Am Stat Assoc 53:457–481

    Article  Google Scholar 

  • Kauppi M, Pukkala E, Isomaki H (1997) Elevated incidence of hematologic malignancies in patients with Sjogren's syndrome compared with patients with rheumatoid arthritis (Finland). Cancer Causes Control 8:201–204

    Article  PubMed  CAS  Google Scholar 

  • Khan SG, Muniz-Medina V, Shahlavi T, Baker CC, Inui H, Ueda T, Emmert S, Schneider TD, Kraemer KH (2002) The human XPC DNA repair gene: arrangement, splice site information content and influence of a single nucleotide polymorphism in a splice acceptor site on alternative splicing and function. Nucleic Acids Res 30:3624–3631

    Article  PubMed  CAS  Google Scholar 

  • Kishore U, Reid KB (2000) C1q: structure, function, and receptors. Immunopharmacology 49:159–170

    Article  PubMed  CAS  Google Scholar 

  • Korb LC, Ahearn JM (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525–4528

    PubMed  CAS  Google Scholar 

  • Mellemkjaer L, Andersen V, Linet MS, Gridley G, Hoover R, Olsen JH (1997) Non-Hodgkin’s lymphoma and other cancers among a cohort of patients with systemic lupus erythematosus. Arthritis Rheum 40:761–768

    Article  PubMed  CAS  Google Scholar 

  • Modrek B, Resch A, Grasso C, Lee C (2001) Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 29:2850–2859

    Article  PubMed  CAS  Google Scholar 

  • Onoe K, Iwabuchi K, Iwabuchi C, Tone S, Konishi J, Kawakami Y, Nishimura M (2002) Enhanced complement sensitivity of NK-T cells in murine thymus and spleen associated with presence of serum immunoglobulin. Immunobiology 206:377–391

    Article  PubMed  CAS  Google Scholar 

  • Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4:448–456

    Article  PubMed  CAS  Google Scholar 

  • Pardoll DM (1999) Inducing autoimmune disease to treat cancer. Proc Natl Acad Sci U S A 96:5340–5342

    Article  PubMed  CAS  Google Scholar 

  • Peters-Golden M, Wise RA, Hochberg M, Stevens MB, Wigley FM (1985) Incidence of lung cancer in systemic sclerosis. J Rheumatol 12:1136–1139

    PubMed  CAS  Google Scholar 

  • Petry F, Loos M (2005) Common silent mutations in all types of hereditary complement C1q deficiencies. Immunogenetics 57:566–571

    Article  PubMed  CAS  Google Scholar 

  • Posner JB (2003) Immunology of paraneoplastic syndromes: overview. Ann N Y Acad Sci 998:178–186

    Article  PubMed  CAS  Google Scholar 

  • Racila E, Scheuermann RH, Picker LJ, Yefenof E, Tucker T, Chang W, Marches R, Street NE, Vitetta ES, Uhr JW (1995) Tumor dormancy and cell signaling. II. Antibody as an agonist in inducing dormancy of a B cell lymphoma in SCID mice. J Exp Med 181:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Racila DM, Sontheimer CJ, Sheffield A, Wisnieski JJ, Racila E, Sontheimer RD (2003) Homozygous single nucleotide polymorphism of the complement C1QA gene is associated with decreased levels of C1q in patients with subacute cutaneous lupus erythematosus. Lupus 12:124–132

    Article  PubMed  CAS  Google Scholar 

  • Ramsey-Goldman R, Mattai SA, Schilling E, Chiu YL, Alo CJ, Howe HL, Manzi S (1998) Increased risk of malignancy in patients with systemic lupus erythematosus. J Investig Med 46:217–222

    PubMed  CAS  Google Scholar 

  • Reid KB (1983) Proteins involved in the activation and control of the two pathways of human complement. Biochem Soc Trans 11:1–12

    PubMed  CAS  Google Scholar 

  • Roodman GD (2004) Mechanisms of bone metastasis. N Engl J Med 350:1655–1664

    Article  PubMed  CAS  Google Scholar 

  • Sigurgeirsson B, Lindelof B, Edhag O, Allander E (1992) Risk of cancer in patients with dermatomyositis or polymyositis. A population-based study. N Engl J Med 326:363–367

    Article  PubMed  CAS  Google Scholar 

  • Tan EM (2001) Autoantibodies as reporters identifying aberrant cellular mechanisms in tumorigenesis. J Clin Invest 108:1411–1415

    Article  PubMed  CAS  Google Scholar 

  • Tan EM, Shi FD (2003) Relative paradigms between autoantibodies in lupus and autoantibodies in cancer. Clin Exp Immunol 134:169–177

    Article  PubMed  CAS  Google Scholar 

  • Tazawa H, Okada F, Kobayashi T, Tada M, Mori Y, Une Y, Sendo F, Kobayashi M, Hosokawa M (2003) Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. Am J Pathol 163:2221–2232

    PubMed  CAS  Google Scholar 

  • von Ahsen N, Oellerich M (2004) The intronic prothrombin 19911A>G polymorphism influences splicing efficiency and modulates effects of the 20210G>A polymorphism on mRNA amount and expression in a stable reporter gene assay system. Blood 103:586–593

    Article  CAS  Google Scholar 

  • Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066

    Article  PubMed  CAS  Google Scholar 

  • Webb KE, Martin JF, Cotton J, Erusalimsky JD, Humphries SE (2003) The 4830C>A polymorphism within intron 5 affects the pattern of alternative splicing occurring within exon 6 of the thrombopoietin gene. Exp Hematol 31:488–494

    Article  PubMed  CAS  Google Scholar 

  • Zeng G, Li Y, El-Gamil M, Sidney J, Sette A, Wang RF, Rosenberg SA, Robbins PF (2002) Generation of NY-ESO-1-specific CD4+ and CD8+ T cells by a single peptide with dual MHC class I and class II specificities: a new strategy for vaccine design. Cancer Res 62:3630–3635

    PubMed  CAS  Google Scholar 

  • Zhu Y, Spitz MR, Amos CI, Lin J, Schabath MB, Wu X (2004) An evolutionary perspective on single-nucleotide polymorphism screening in molecular cancer epidemiology. Cancer Res 64:2251–2257

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Melinda Andreski for patient consenting and collection and coding of blood specimens. We thank Carol Scott-Conner, Jean Arndt, Mark Karwal and Susan Roman for helping identify potential subjects. Input from all members of our research group, especially Drs. Brian Link and James Wooldridge, is recognized and appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilian Racila.

Additional information

Supported in part by National Institute of Health grant R21-CA90822, Friends You Can Count On! grant 1-87093-00, and the Woody and Louise White Cancer Research Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Racila, E., Racila, D.M., Ritchie, J.M. et al. The pattern of clinical breast cancer metastasis correlates with a single nucleotide polymorphism in the C1qA component of complement. Immunogenetics 58, 1–8 (2006). https://doi.org/10.1007/s00251-005-0077-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-005-0077-y

Keywords

Navigation