Skip to main content

Advertisement

Log in

Differential TCR gene usage between WC1 and WC1 + ruminant γδ T cell subpopulations including those responding to bacterial antigen

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Ruminant γδ T cells are divided into subpopulations based on the presence or absence of WC1 co-receptors (scavenger-receptor-cysteine-rich family members uniquely expressed on γδ T cells). Evidence suggests WC1+ are inflammatory while WC1 are regulatory and that they also differ in their tissue distribution. Recently, this paradigm was refined further as cells that produce interferon-γ and proliferate to autologous antigens, leptospira antigens, or IL-12 were largely found within the WC1+ subpopulation that bears the WC1.1 antigenic epitope but not that bearing the WC1.2 epitope. Here, the T cell receptor gene expression by these different subpopulations (WC1, WC1.1+, and WC1.2+) was compared using flow cytometrically-purified cells and reverse transcriptase-polymerase chain reaction (RT-PCR). The WC1 γδ T cells had transcripts for all 11 possible combinations of the TRG subgroup V and C genes while those in both WC1+ subpopulations were restricted to TRGV3–TRGC5 and TRGV7–TRGC5. In contrast, all three subpopulations expressed transcripts from all four known bovine TRDV genes. Further analysis of the WC1+ γδ T cells that proliferated in leptospira antigen-stimulated cultures indicated that they do not represent a unique subpopulation within the larger WC1+ population based on their TCR gene usage. Moreover, sequencing of 65 transcripts showed that their junctional regions were diverse as TRGJ5-1, TRGJ5-2, TRDJ1, and TRDJ3 were used, and CDR3s ranged from 9  to 24 amino acids. The restricted but shared γδ TCR gene usage for WC1.1+, WC1.2+, and WC1+-antigen-responsive cells leaves open the possibility that the WC1 co-receptor is an important determining element in the activation process and subsequent response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asarnow DM, Kuziel WA, Bonyhadi M, Tigelaar RE, Tucker PW, Allison JP (1988) Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55:837–847

    Article  PubMed  CAS  Google Scholar 

  • Ayoub IA, Yang TJ (1996) Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: a longitudinal study. Dev Comp Immunol 20:353–363

    Article  PubMed  CAS  Google Scholar 

  • Baldwin CL, Sathiyaseelan T, Rocchi M, McKeever D (2000) Rapid changes occur in the percentage of circulating bovine WC1+ γδ Th1 cells. Res Vet Sci 69:175–180

    Article  PubMed  CAS  Google Scholar 

  • Baldwin CL, Sathiyaseelan T, Naiman B, White AM, Brown R, Blumerman S, Rogers A, Black SJ (2002) Activation of bovine peripheral blood γδ T cells for cell division and IFN-γ production. Vet Immunol Immunopathol 87:251–259

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  PubMed  CAS  Google Scholar 

  • Bikker FJ, Ligtenberg AJ, End C, Renner M, Blaich S, Lyer S, Wittig R, van’t Hof W, Veerman EC, Nazmi K, Blieck-Hogervorst JM, Kioschis P, Nieuw Amerongen AV, Poustka A, Mollenhauer J (2004) Bacteria binding by DMBT1/SAG/gp-340 is confined to the VEVLXXXXW motif in its scavenger receptor cysteine-rich domains. J Biol Chem 279:47699–47703

    Article  PubMed  CAS  Google Scholar 

  • Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–90

    Article  PubMed  CAS  Google Scholar 

  • Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237

    Article  PubMed  CAS  Google Scholar 

  • Bukowski JF, Morita CT, Tanaka Y, Bloom BR, Brenner MB, Band H (1995) Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J Immunol 154:998–1006

    PubMed  CAS  Google Scholar 

  • Carding SR, Egan PJ (2002) γδ T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    Article  PubMed  CAS  Google Scholar 

  • Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31:3497–500

    Article  PubMed  CAS  Google Scholar 

  • Chien YH, Jores R, Crowley MP (1996) Recognition by gamma/delta T cells. Annu Rev Immunol 14:511–532

    Article  PubMed  CAS  Google Scholar 

  • Clevers H, MacHugh ND, Bensaid A, Dunlap S, Baldwin CL, Kaushal A, Iams K, Howard CJ, Morrison WI (1990) Identification of a bovine surface antigen uniquely expressed on CD4–CD8- T cell receptor gamma/delta+ T lymphocytes. Eur J Immunol 20:809–817

    PubMed  CAS  Google Scholar 

  • Crocker G, Sopp P, Parsons K, Davis WC, Howard CJ (1993) Analysis of the gamma/delta T cell restricted antigen WC1. Vet Immunol Immunopathol 39:137–144

    Article  PubMed  CAS  Google Scholar 

  • Das H, Sugita M, Brenner MB (2004) Mechanisms of Vdelta1 gammadelta T cell activation by microbial components. J Immunol 172:6578–6586

    PubMed  CAS  Google Scholar 

  • Daubenberger CA, Taracha EL, Gaidulis L, Davis WC, McKeever DJ (1999) Bovine γδ T-cell responses to the intracellular protozoan parasite Theileria parva. Infect Immun 67:2241–2249

    PubMed  CAS  Google Scholar 

  • Egan PJ, Carding SR (2000) Down modulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J Exp Med 191:2145–2158

    Article  PubMed  CAS  Google Scholar 

  • Elliott JF, Rock EP, Patten PA, Davis MM, Chien YH (1988) The adult T-cell receptor delta-chain is diverse and distinct from that of fetal thymocytes. Nature 331:627–631

    Article  PubMed  CAS  Google Scholar 

  • Glusman G, Rowen L, Lee I, Boysen C, Roach JC, Smit AF, Wang K, Koop BF, Hood L (2001) Comparative genomics of the human and mouse T cell receptor loci. Immunity 15:337–349

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279:1737–1740

    Article  PubMed  CAS  Google Scholar 

  • Hanby-Flarida MD, Trask OJ, Yang TJ, Baldwin CL (1996) Modulation of WC1, a lineage-specific cell surface molecule of gamma/delta T cells augments cellular proliferation. Immunology 88:116–123

    Article  PubMed  CAS  Google Scholar 

  • Hata S, Satyanarayana K, Devlin P, Band H, McLean J, Strominger JL, Brenner MB, Krangel MS (1988) Extensive junctional diversity of rearranged human T cell receptor delta genes. Science 240:1541–1544

    PubMed  CAS  Google Scholar 

  • Havran WL, Grell S, Duwe G, Kimura J, Wilson A, Kruisbeek AM, O'brien RL, Born W, Tigelaar RE, Allison JP (1989) Limited diversity of T-cell receptor γ-chain expression of murine Thy-1+ dendritic epidermal cells revealed by Vγ3-specific monoclonal antibody. Proc Natl Acad Sci U S A 86:4185–4189

    Article  PubMed  CAS  Google Scholar 

  • Havran WL, Chien YH, Allison JP (1991) Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252:1430–1432

    PubMed  CAS  Google Scholar 

  • Hayday AC (2000) γδ cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    Article  PubMed  CAS  Google Scholar 

  • Hedges JF, Cockrell D, Jackiw L, Meissner N, Jutila MA (2003) Differential mRNA expression in circulating gammadelta T lymphocyte subsets defines unique tissue-specific functions. J Leukoc Biol 73:306–314

    Article  PubMed  CAS  Google Scholar 

  • Hein WR, Dudler L (1993) Divergent evolution of T cell repertoires: extensive diversity and developmentally regulated expression of the sheep γδ T cell receptor. EMBO J 12:715–24

    PubMed  CAS  Google Scholar 

  • Hein WR, Dudler L (1997) TCR γδ+ cells are prominent in normal bovine skin and express a diverse repertoire of antigen receptors. Immunology 91:58–64

    Article  PubMed  CAS  Google Scholar 

  • Herzig C, Blumerman S, Lefranc MP, Baldwin C (2006a) Bovine T cell receptor gamma variable and constant genes: combinatorial usage by circulating γδ T cells. Immunogenetics 58(2-3):138–151

    Article  PubMed  CAS  Google Scholar 

  • Herzig CTA, Blumerman SL, Baldwin CL (2006b) Identification of three new bovine T cell receptor delta variable gene subgroups expressed by peripheral blood T cells. Immunogenetics (in press)

  • Ishiguro N, Aida Y, Shinagawa T, Shinagawa M (1993) Molecular structures of cattle T-cell receptor γ and δ chains predominantly expressed on peripheral blood lymphocytes. Immunogenetics 38:437–443

    Article  PubMed  CAS  Google Scholar 

  • Kennedy HE, Welsh MD, Bryson DG, Cassidy JP, Forster FI, Howard CJ, Collins RA, Pollock JM (2002) Modulation of immune responses to Mycobacterium bovis in cattle depleted of WC1(+) gamma delta T cells. Infect Immun 70:1488–1500

    Article  PubMed  CAS  Google Scholar 

  • Lahmers KK, Norimine J, Abrahamsen MS, Palmer GH, Brown WC (2005) The CD4+ T cell immunodominant Anaplasma marginale major surface protein 2 stimulates γδ T cell clones that express unique T cell receptors. J Leukoc Biol 77:199–208

    Article  PubMed  CAS  Google Scholar 

  • Leiden JM (1993) Transcriptional regulation of T cell receptor genes. Annu Rev Immunol 11:539–570

    Article  PubMed  CAS  Google Scholar 

  • Loh EY, Elliott JF, Cwirla S, Lanier LL, Davis MM (1989) Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science 243:217–220

    PubMed  CAS  Google Scholar 

  • MacHugh ND, Mburu JK, Carol MJ, Wyatt CR, Orden JA, Davis WC (1997) Identification of two distinct subsets of bovine γδ T cells with unique cell surface phenotype and tissue distribution. Immunology 92:340–345

    Article  PubMed  CAS  Google Scholar 

  • Mak TW, Ferrick DA (1998) The gammadelta T-cell bridge: linking innate and acquired immunity. Nat Med 4:764–765

    Article  PubMed  CAS  Google Scholar 

  • McVay LD, Jaswal SS, Kennedy C, Hayday A, Carding SR (1998) The generation of human gammadelta T cell repertoires during fetal development. J Immunol 160:5851–5860

    PubMed  CAS  Google Scholar 

  • Meissner N, Radke J, Hedges JF, White M, Behnke M, Bertolino S, Abrahamsen M, Jutila MA (2003) Serial analysis of gene expression in circulating gamma delta T cell subsets defines distinct immunoregulatory phenotypes and unexpected gene expression profiles. J Immunol 170:356–364

    PubMed  CAS  Google Scholar 

  • Mokuno Y, Matsuguchi T, Takano M, Nishimura H, Washizu J, Ogawa T, Takeuchi O, Akira S, Nimura Y, Yoshikai Y (2000) Expression of toll-like receptor 2 on gamma delta T cells bearing invariant V gamma 6/V delta 1 induced by Escherichia coli infection in mice. J Immunol 165:931–940

    PubMed  CAS  Google Scholar 

  • Naiman BM, Alt D, Bolin CA, Zuerner R, Baldwin CL (2001) Protective killed Leptospira borgpetersenii vaccine induces potent Th1 immunity comprising responses by CD4 and γδ T lymphocytes. Infect Immun 69:7550–7558

    Article  PubMed  CAS  Google Scholar 

  • Naiman BM, Blumerman S, Alt D, Bolin CA, Brown R, Zuerner R, Baldwin CL (2002) Evaluation of type 1 immune response in naive and vaccinated animals following challenge with Leptospira borgpetersenii serovar Hardjo: involvement of WC1(+) gammadelta and CD4 T cells. Infect Immun 70:6147–6157

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I, Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T, Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K, Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers J, Birney E, Hayashizaki Y (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Article  PubMed  Google Scholar 

  • Ortaldo JR, Young HA (2005) Mouse Ly49 NK receptors: balancing activation and inhibition. Mol Immunol 42:445–450

    Google Scholar 

  • Pennington DJ, Vermijlen D, Wise EL, Clarke SL, Tigelaar RE, Hayday AC (2005) The integration of conventional and unconventional T cells that characterizes cell-mediated responses. Adv Immunol 87:27–59

    PubMed  Google Scholar 

  • Rhodes SG, Hewinson RG, Vordermeier HM (2001) Antigen recognition and immunomodulation by gamma delta T cells in bovine tuberculosis. J Immunol 166:5604–5610

    PubMed  CAS  Google Scholar 

  • Rogers AN, Vanburen DG, Hedblom EE, Tilahun ME, Telfer JC, Baldwin CL (2005) γδ T cell function varies with the expressed WC1 coreceptor. J Immunol 174:3386–3393

    PubMed  CAS  Google Scholar 

  • Sathiyaseelan T, Naiman B, Welte S, MacHugh N, Black SJ, Baldwin CL (2002) Immunological characterization of a γδ T-cell stimulatory ligand on autologous monocytes. Immunology 105:181–189

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW (2002) Adaptive immune response of Vγ2Vδ2+ T cells during mycobacterial infections. Science 295:2255–2258

    Article  PubMed  CAS  Google Scholar 

  • Shin S, El Diwany R, Schaffert S, Adams EJ, Garcia KC, Pereira P, Chien YH (2005) Antigen recognition determinants of γδ T cell receptors. Science 308:252–255

    Article  PubMed  CAS  Google Scholar 

  • Singer PA, Balderas RS, Theofilopoulos AN (1990) Thymic selection defines multiple T cell receptor Vβ ‘repertoire phenotypes’ at the CD4/CD8 subset level. EMBO J 9:3641–3648

    PubMed  CAS  Google Scholar 

  • Szabo SJ, Dighe AS, Gubler U, Murphy KM (1997) Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med 185:817–824

    Article  PubMed  CAS  Google Scholar 

  • Takamatsu HH, Kirkham PA, Parkhouse RM (1997) A gamma delta T cell specific surface receptor (WC1) signaling G0/G1 cell cycle arrest. Eur J Immunol 27:105–110

    PubMed  CAS  Google Scholar 

  • Taniguchi M, Seino K, Nakayama T (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4:1164–1165

    Article  PubMed  CAS  Google Scholar 

  • Tuo W, Bazer FW, Davis WC, Zhu D, Brown WC (1999) Differential effects of type I IFNs on the growth of WC1 CD8+ γδ T cells and WC1+ CD8 δγ T cells in vitro. J Immunol 162:245–253

    PubMed  CAS  Google Scholar 

  • Walker ID, Glew MD, O’Keeffe MA, Metcalfe SA, Clevers HC, Wijngaard PL, Adams TE, Hein WR (1994) A novel multi-gene family of sheep gamma delta T cells. Immunology 83:517–523

    PubMed  CAS  Google Scholar 

  • Welsh MD, Kennedy HE, Smyth AJ, Girvin RM, Andersen P, Pollock JM (2002) Responses of bovine WC1+ γδ T cells to protein and nonprotein antigens of Mycobacterium bovis. Infect Immun 70:6114–6120

    Article  PubMed  CAS  Google Scholar 

  • Wijngaard PL, MacHugh ND, Metzelaar MJ, Romberg S, Bensaid A, Pepin L, Davis WC, Clevers HC (1994) Members of the novel WC1 gene family are differentially expressed on subsets of bovine CD4–CD8- γδ T lymphocytes. J Immunol 152:3476–3482

    PubMed  CAS  Google Scholar 

  • Wijngaard PL, Metzelaar MJ, MacHugh ND, Morrison WI, Clevers HC (1992) Molecular characterization of the WC1 antigen expressed specifically on bovine CD4–CD8-gamma delta T lymphocytes. J Immunol 149:3273–3277

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Alice Givan and Gary Ward at the Englert Cell Analysis Lab of Dartmouth Medical School (Lebanon, NH) for their assistance with cell sorting. This work was funded by the National Research Initiative USDA-CREES grant 2002-02038 and 2004-35204-14850 and CSREES USDA Massachusetts Agricultural Experiment Station Project No. MAS00851. We thank Dr. Marie-Paule Lefranc for her assistance in clarifying TRG and TRD gene organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia L. Baldwin.

Additional information

The first two authors contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blumerman, S.L., Herzig, C.T.A., Rogers, A.N. et al. Differential TCR gene usage between WC1 and WC1 + ruminant γδ T cell subpopulations including those responding to bacterial antigen . Immunogenetics 58, 680–692 (2006). https://doi.org/10.1007/s00251-006-0122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0122-5

Keywords

Navigation