Skip to main content
Log in

Evolutionary relationships of vertebrate NACHT domain-containing proteins

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Phylogenetic analyses of conserved [neuronal apoptosis inhibitory protein (NAIP), MHC class II transcription activator (CIITA), incompatibility locus protein from Podospora anserina (HET-E), and telomerase-associated protein (TP1)] (NACHT) domains were used to reconstruct the evolutionary history of vertebrate NACHT-containing proteins. The results supported the hypothesis that NOD3 is basal to the other NACHT-containing proteins found in tetrapods. The latter formed two strongly supported clusters or subfamilies, here designated NALP and nucleotide-binding oligomerization domain (NOD). The presence of apparent bony fish orthologs of NOD3 and CIITA supported the hypothesis that the origin of these molecules predates the origin of tetrapods, and the presence of avian sequences in both NALP and NOD clusters supported the origin of these subfamilies before the bird–mammal divergence. However, the extensive diversification of the NALP subfamily seen in mammals evidently occurred within the mammalian lineage. Both NALP and NOD subfamilies include members with differential expression in the antigen-presenting cells of the immune system, and the phylogenetic analyses supported the hypothesis that this expression pattern has evolved independently more than once in each of these subfamilies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Drozina G, Kohoutek J, Jabrane-Ferrat N, Peterlin BM (2005) Expression of MHC II genes. Curr Top Microbiol Immunol 290:147–170

    Article  PubMed  CAS  Google Scholar 

  • Dunne A, O’Neill N (2005) Adaptor usage and toll-like receptor signaling specificity. FEBS Lett 579:3330–3335

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1994a) Evolution of cystein proteases in eukaryotes. Mol Phylogenet Evol 3:310–321

    Article  CAS  Google Scholar 

  • Hughes AL (1994b) The evolution of functionally novel proteins after gene duplication. Proc R Soc Lond B 256:119–124

    CAS  Google Scholar 

  • Hughes AL (1999) Adaptive evolution of genes and genomes. Oxford University Press, New York

  • Hysi P, Kabesch M, Moffatt MF, Schedel M, Carr D, Zhang Y, Boardman B, von Mutius E, Weiland SK, Leupold W, Fritsch C, Klopp N, Musk AW, James A, Nuñez G, Inohara N, Cookson WOC (2005) NOD1 variation, immunoglobulin E and asthma. Hum Mol Genet 14:935–941

    Article  PubMed  CAS  Google Scholar 

  • Inohara N, Nuñez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–381

    Article  PubMed  CAS  Google Scholar 

  • Inohara N, Chamaillard M, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host–microbial interactions and inflammatory disease. Ann Rev Biochem 74:355–383

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    PubMed  CAS  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56:683–695

    Article  PubMed  CAS  Google Scholar 

  • Koonin EV, Aravind L (2000) The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci 25:223–224

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • McDonald C, Inohara N, Nuñez G (2005) Peptidoglycan signaling in innate immunity and inflammatory disease. J Biol Chem 280:20177–20180

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

  • Russell RK, Nimmo ER, Satsangi J (2004) Molecular genetics of Crohn’s disease. Curr Opin Genet Dev 14:264–270

    Article  PubMed  CAS  Google Scholar 

  • Rzhetsky A, Nei M (1992) A simple method for estimating and testing minimum-evolution trees. J Mol Evol 35:367–375

    Article  PubMed  CAS  Google Scholar 

  • Strimmer K, von Haeseler A (1996) Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13:964–969

    CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer, Sunderland MA

  • Thompson JD, Higgins DG, Gibson T (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  CAS  Google Scholar 

  • Ting J P-Y, Davis BK (2005) CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu Rev Immunol 23:387–414

    Article  PubMed  CAS  Google Scholar 

  • Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by grant GM43940 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin L. Hughes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

251_2006_148_MOESM1_ESM.txt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, A.L. Evolutionary relationships of vertebrate NACHT domain-containing proteins. Immunogenetics 58, 785–791 (2006). https://doi.org/10.1007/s00251-006-0148-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0148-8

Keywords

Navigation