Skip to main content
Log in

Non-coding RNAs revealed during identification of genes involved in chicken immune responses

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Recent large-scale cDNA cloning studies have shown that a significant proportion of the transcripts expressed from vertebrate genomes do not appear to encode protein. Moreover, it was reported in mammals (human and mice) that these non-coding transcripts are expressed and regulated by mechanisms similar to those involved in the control of protein-coding genes. We have produced a collection of cDNA sequences from immunologically active tissues with the aim of discovering chicken genes involved in immune mechanisms, and we decided to explore the non-coding component of these immune-related libraries. After finding known non-coding RNAs (miRNA, snRNA, snoRNA), we identified new putative mRNA-like non-coding RNAs. We characterised their expression profiles in immune-related samples. Some of them showed changes in expression following viral infections. As they exhibit patterns of expression that parallel the behaviour of protein-coding RNAs in immune tissues, our study suggests that they could play an active role in the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Avner P, Heard E (2001) X-chromosome inactivation: counting, choice and initiation. Nat Rev Genet 2:59–67

    Article  PubMed  CAS  Google Scholar 

  • Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, Samanta M, Weissman S, Gerstein M, Snyder M (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    Article  PubMed  CAS  Google Scholar 

  • Beug H, von Kirchbach A, Doderlein G, Conscience JF, Graf T (1979) Chicken hematopoietic cells transformed by seven strains of defective avian leukemia viruses display three distinct phenotypes of differentiation. Cell 18:375–390

    Article  PubMed  CAS  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP, Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T, Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A, Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, Sementchenko V, Cheng J, Williams AJ, Wheeler R, Wong B, Drenkow J, Yamanaka M, Patel S, Brubaker S, Tammana H, Helt G, Struhl K, Gingeras TR (2004) Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116:499–509

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Lodish HF (2005) MicroRNAs as regulators of mammalian hematopoiesis. Semin Immunol 17:155–165

    Article  PubMed  CAS  Google Scholar 

  • Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucl Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H, Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I, Gerhard DS, Gingeras TR (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science 308:1149–1154

    Article  PubMed  CAS  Google Scholar 

  • Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699–705

    Article  PubMed  CAS  Google Scholar 

  • Cobb BS, Hertweck A, Smith J, O’Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M (2006) A role for Dicer in immune regulation. J Exp Med 203:2519–2527

    Article  PubMed  CAS  Google Scholar 

  • D’Haeseleer P, Liang S, Somogyi R (2000) Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics 16:707–726

    Article  PubMed  CAS  Google Scholar 

  • Defrance M, Touzet H (2006) Predicting transcription factor binding sites using local over-representation and comparative genomics. BMC Bioinformatics 7:396

    Article  PubMed  Google Scholar 

  • Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  • EMBL Nucleotide Sequence Database. http://www.ebi.ac.uk/embl/index.html

  • ENSEMBL Chicken Genome Browser. [http://www.ensembl.org/Gallus_gallus/index.html]

  • Erdmann VA, Szymanski M, Hochberg A, de Groot N, Barciszewski J (1999) Collection of mRNA-like non-coding RNAs. Nucleic Acids Res 27:192–195

    Article  PubMed  CAS  Google Scholar 

  • Erdmann VA, Szymanski M, Hochberg A, Groot N, Barciszewski J (2000) Non-coding, mRNA-like RNAs database Y2K. Nucleic Acids Res 28:197–200

    Article  PubMed  CAS  Google Scholar 

  • Espinoza CA, Goodrich JA, Kugel JF (2007) Characterization of the structure, function, and mechanism of B2 RNA, an ncRNA repressor of RNA polymerase II transcription. Rna 13:583–596

    Article  PubMed  CAS  Google Scholar 

  • Expressed Sequence Tag Database. http://www.ncbi.nlm.nih.gov/dbEST/

  • Frith MC, Bailey TL, Kasukawa T, Mignone F, Kummerfeld SK, Madera M, Sunkara S, Furuno M, Bult CJ, Quackenbush J, Kai C, Kawai J, Carninci P, Hayashizaki Y, Pesole G, Mattick JS (2006) Discrimination of non-protein-coding transcripts from protein-coding mRNA. RNA Biol 3

  • Fritz JH, Girardin SE, Philpott DJ (2006) Innate immune defense through RNA interference. Sci STKE 2006:pe27

  • Goodrich JA, Kugel JF (2006) Non-coding-RNA regulators of RNA polymerase II transcription. Nat Rev Mol Cell Biol 7:612–626

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR (2003) Rfam: an RNA family database. Nucleic Acids Res 31:439–441

    Article  PubMed  CAS  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucl Acids Res 36:D154–D158

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SJ, Grafham DV, Beattie KJ, Overton IM, McLaren SR, Croning MD, Boardman PE, Bonfield JK, Burnside J, Davies RM, Farrell ER, Francis MD, Griffiths-Jones S, Humphray SJ, Hyland C, Scott CE, Tang H, Taylor RG, Tickle C, Brown WR, Birney E, Rogers J, Wilson SA (2005) Transcriptome analysis for the chicken based on 19,626 finished cDNA sequences and 485,337 expressed sequence tags. Genome Res 15:174–183

    Article  PubMed  Google Scholar 

  • Imanishi T, Itoh T, Suzuki Y, O’Donovan C, Fukuchi S, Koyanagi KO, Barrero RA, Tamura T, Yamaguchi-Kabata Y, Tanino M, Yura K, Miyazaki S, Ikeo K, Homma K, Kasprzyk A, Nishikawa T, Hirakawa M, Thierry-Mieg J, Thierry-Mieg D, Ashurst J, Jia L, Nakao M, Thomas MA, Mulder N, Karavidopoulou Y, Jin L, Kim S, Yasuda T, Lenhard B, Eveno E, Suzuki Y, Yamasaki C, Takeda J, Gough C, Hilton P, Fujii Y, Sakai H, Tanaka S, Amid C, Bellgard M, Bonaldo Mde F, Bono H, Bromberg SK, Brookes AJ, Bruford E, Carninci P, Chelala C, Couillault C, de Souza SJ, Debily MA, Devignes MD, Dubchak I, Endo T, Estreicher A, Eyras E, Fukami-Kobayashi K, Gopinath GR, Graudens E, Hahn Y, Han M, Han ZG, Hanada K, Hanaoka H, Harada E, Hashimoto K, Hinz U, Hirai M, Hishiki T, Hopkinson I, Imbeaud S, Inoko H, Kanapin A, Kaneko Y, Kasukawa T, Kelso J, Kersey P, Kikuno R, Kimura K, Korn B, Kuryshev V, Makalowska I, Makino T, Mano S, Mariage-Samson R, Mashima J, Matsuda H, Mewes HW, Minoshima S, Nagai K, Nagasaki H, Nagata N, Nigam R, Ogasawara O, Ohara O, Ohtsubo M, Okada N, Okido T, Oota S, Ota M, Ota T et al (2004) Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol 2:e162

    Article  PubMed  Google Scholar 

  • Inagaki S, Numata K, Kondo T, Tomita M, Yasuda K, Kanai A, Kageyama Y (2005) Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila. Genes Cells 10:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, Piccolboni A, Bekiranov S, Helt G, Tammana H, Gingeras TR (2004) Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Res 14:331–342

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S, Gingeras TR (2005) Examples of the complex architecture of the human transcriptome revealed by RACE and high-density tiling arrays. Genome Res 15:987–997

    Article  PubMed  CAS  Google Scholar 

  • Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ, Weber RJ, Haussler D, Kent WJ (2003) The UCSC Genome Browser Database. Nucleic Acids Res 31:51–54

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Kondo T, Hashimoto Y, Kato K, Inagaki S, Hayashi S, Kageyama Y (2007) Small peptide regulators of actin-based cell morphogenesis encoded by a polycistronic mRNA. Nat Cell Biol 9:660–665

    Article  PubMed  CAS  Google Scholar 

  • Kuhn RM, Karolchik D, Zweig AS, Trumbower H, Thomas DJ, Thakkapallayil A, Sugnet CW, Stanke M, Smith KE, Siepel A, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pedersen JS, Hsu F, Hinrichs AS, Harte RA, Diekhans M, Clawson H, Bejerano G, Barber GP, Baertsch R, Haussler D, Kent WJ (2007) The UCSC genome browser database: update 2007. Nucleic Acids Res 35:D668–D673

    Article  PubMed  CAS  Google Scholar 

  • Li Q-J, Chau J, Ebert PJR, Sylvester G, Min H, Liu G, Braich R, Manoharan M, Soutschek J, Skare P, Klein LO, Davis MM, Chen C-Z (2007) miR-181a Is an intrinsic modulator of T cell sensitivity and selection. Cell 129:147–161

    Article  PubMed  CAS  Google Scholar 

  • Loots G, Ovcharenko I (2007) ECRbase: database of evolutionary conserved regions, promoters, and transcription factor binding sites in vertebrate genomes. Bioinformatics 23:122–124

    Article  PubMed  CAS  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(Spec No 1):R17–R29

    Article  PubMed  CAS  Google Scholar 

  • Melamed E, Arnold A (2007) Regional differences in dosage compensation on the chicken Z chromosome. Genome Biol 8:R202

    Article  PubMed  Google Scholar 

  • Meyer BJ, McDonel P, Csankovszki G, Ralston E (2004) Sex and X-chromosome-wide repression in Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 69:71–79

    Article  PubMed  CAS  Google Scholar 

  • Mignone F, Grillo G, Licciulli F, Iacono M, Liuni S, Kersey PJ, Duarte J, Saccone C, Pesole G (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 33:D141–D146

    Article  PubMed  CAS  Google Scholar 

  • miRBase Sequences Database. [http://microrna.sanger.ac.uk/sequences/]

  • Murad JM, de Souza LR, De Lucca FL (2006) PKR activation by a non-coding RNA expressed in lymphocytes of mice bearing B16 melanoma. Blood Cells Mol Dis 37:128–133

    Article  PubMed  CAS  Google Scholar 

  • Nair V, Zavolan M (2006) Virus-encoded microRNAs: novel regulators of gene expression. Trends Microbiol 14:169–175

    Article  PubMed  CAS  Google Scholar 

  • NCBI Database. http://www.ncbi.nlm.nih.gov/

  • Nguyen DK, Disteche CM (2006) Dosage compensation of the active X chromosome in mammals. Nat Genet 38:47–53

    Article  PubMed  CAS  Google Scholar 

  • Numata K, Kanai A, Saito R, Kondo S, Adachi J, Wilming LG, Hume DA, Hayashizaki Y, Tomita M (2003) Identification of putative noncoding RNAs among the RIKEN mouse full-length cDNA collection. Genome Res 13:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D (2007) MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 104:1604–1609

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R, Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C, Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A, Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE, Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T, Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ, Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A, Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L, McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G, Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J, Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R, Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C, Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M et al (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420:563–573

    Article  PubMed  Google Scholar 

  • Ota T, Suzuki Y, Nishikawa T, Otsuki T, Sugiyama T, Irie R, Wakamatsu A, Hayashi K, Sato H, Nagai K, Kimura K, Makita H, Sekine M, Obayashi M, Nishi T, Shibahara T, Tanaka T, Ishii S, Yamamoto J, Saito K, Kawai Y, Isono Y, Nakamura Y, Nagahari K, Murakami K, Yasuda T, Iwayanagi T, Wagatsuma M, Shiratori A, Sudo H, Hosoiri T, Kaku Y, Kodaira H, Kondo H, Sugawara M, Takahashi M, Kanda K, Yokoi T, Furuya T, Kikkawa E, Omura Y, Abe K, Kamihara K, Katsuta N, Sato K, Tanikawa M, Yamazaki M, Ninomiya K, Ishibashi T, Yamashita H, Murakawa K, Fujimori K, Tanai H, Kimata M, Watanabe M, Hiraoka S, Chiba Y, Ishida S, Ono Y, Takiguchi S, Watanabe S, Yosida M, Hotuta T, Kusano J, Kanehori K, Takahashi-Fujii A, Hara H, Tanase TO, Nomura Y, Togiya S, Komai F, Hara R, Takeuchi K, Arita M, Imose N, Musashino K, Yuuki H, Oshima A, Sasaki N, Aotsuka S, Yoshikawa Y, Matsunawa H, Ichihara T, Shiohata N, Sano S, Moriya S, Momiyama H, Satoh N, Takami S, Terashima Y, Suzuki O, Nakagawa S, Senoh A, Mizoguchi H, Goto Y, Shimizu F, Wakebe H, Hishigaki H, Watanabe T, Sugiyama A et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36:40–45

    Article  PubMed  Google Scholar 

  • Pang KC, Stephen S, Engstrom PG, Tajul-Arifin K, Chen W, Wahlestedt C, Lenhard B, Hayashizaki Y, Mattick JS (2005) RNAdb—a comprehensive mammalian noncoding RNA database. Nucleic Acids Res 33:D125–D130

    Article  PubMed  CAS  Google Scholar 

  • Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22:1–5

    Article  PubMed  CAS  Google Scholar 

  • Pang KC, Stephen S, Dinger ME, Engstrom PG, Lenhard B, Mattick JS (2007) RNAdb 2.0—an expanded database of mammalian non-coding RNAs. Nucleic Acids Res 35:D178–D182

    Article  PubMed  CAS  Google Scholar 

  • Pfam database. http://www.sanger.ac.uk/Software/Pfam/

  • Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233–278

    Article  PubMed  CAS  Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    Article  PubMed  CAS  Google Scholar 

  • Ravasi T, Suzuki H, Pang KC, Katayama S, Furuno M, Okunishi R, Fukuda S, Ru K, Frith MC, Gongora MM, Grimmond SM, Hume DA, Hayashizaki Y, Mattick JS (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16:11–19

    Article  PubMed  CAS  Google Scholar 

  • Repetitive DNA Elements Database. http://www.girinst.org/repbase/index.html

  • Rothwell L, Young JR, Zoorob R, Whittaker CA, Hesketh P, Archer A, Smith AL, Kaiser P (2004) Cloning and characterization of chicken IL-10 and its role in the immune response to Eimeria maxima. J Immunol 173:2675–2682

    PubMed  CAS  Google Scholar 

  • Ruby T, Whittaker C, Withers DR, Chelbi-Alix MK, Morin V, Oudin A, Young JR, Zoorob R (2006) Transcriptional profiling reveals a possible role for the timing of the inflammatory response in determining susceptibility to a viral infection. J Virol 80:9207–9216

    Article  PubMed  CAS  Google Scholar 

  • Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK (2006) Host–virus interaction: a new role for microRNAs. Retrovirology 3:68

    Article  PubMed  Google Scholar 

  • Schadt EE, Edwards SW, GuhaThakurta D, Holder D, Ying L, Svetnik V, Leonardson A, Hart KW, Russell A, Li G, Cavet G, Castle J, McDonagh P, Kan Z, Chen R, Kasarskis A, Margarint M, Caceres RM, Johnson JM, Armour CD, Garrett-Engele PW, Tsinoremas NF, Shoemaker DD (2004) A comprehensive transcript index of the human genome generated using microarrays and computational approaches. Genome Biol 5:R73

    Article  PubMed  Google Scholar 

  • Smith J, Speed D, Law AS, Glass EJ, Burt DW (2004) In-silico identification of chicken immune-related genes. Immunogenetics 56:122–133

    Article  PubMed  CAS  Google Scholar 

  • Smyth GK (2005) Limma: linear models for microarray data. Springer, New York

    Google Scholar 

  • Smyth GK, Speed T (2003) Normalization of cDNA microarray data. Methods 31:265–273

    Article  PubMed  CAS  Google Scholar 

  • Soares MB, Bonaldo MF, Jelene P, Su L, Lawton L, Efstratiadis A (1994) Construction and characterization of a normalized cDNA library. Proc Natl Acad Sci USA 91:9228–9232

    Article  PubMed  CAS  Google Scholar 

  • Stekel DJ, Git Y, Falciani F (2000) The comparison of gene expression from multiple cDNA libraries. Genome Res 10:2055–2061

    Article  PubMed  CAS  Google Scholar 

  • Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S, Herreman T, Tongprasit W, Barbano PE, Bussemaker HJ, White KP (2004) A gene expression map for the euchromatic genome of Drosophila melanogaster. Science 306:655–660

    Article  PubMed  CAS  Google Scholar 

  • Szymanski M, Erdmann VA, Barciszewski J (2003) Noncoding regulatory RNAs database. Nucleic Acids Res 31:429–431

    Article  PubMed  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103:12481–12486

    Article  PubMed  CAS  Google Scholar 

  • Taganov KD, Boldin MP, Baltimore D (2007) MicroRNAs and immunity: tiny players in a big field. Immunity 26:133–137

    Article  PubMed  CAS  Google Scholar 

  • Tam W, Ben-Yehuda D, Hayward WS (1997) bic, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol Cell Biol 17:1490–1502

    PubMed  CAS  Google Scholar 

  • Tregaskes CA, Glansbeek HL, Gill AC, Hunt LG, Burnside J, Young JR (2005) Conservation of biological properties of the CD40 ligand, CD154 in a non-mammalian vertebrate. Dev Comp Immunol 29:361–374

    Article  PubMed  CAS  Google Scholar 

  • Uniprot database. http://www.expasy.uniprot.org/

  • UTR Site. http://www2.ba.itb.cnr.it/UTRSite/

  • Wen J, Parker BJ, Weiller GF (2007) In silico identification and characterization of mRNA-like noncoding transcripts in medicago truncatula. In Silico Biol 7:485–505

    PubMed  CAS  Google Scholar 

  • Willingham AT, Orth AP, Batalov S, Peters EC, Wen BG, Aza-Blanc P, Hogenesch JB, Schultz PG (2005) A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309:1570–1573

    Article  PubMed  CAS  Google Scholar 

  • Yeung KY, Haynor DR, Ruzzo WL (2001) Validating clustering for gene expression data. Bioinformatics 17:309–318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funds from the European Commission to RZ (KA5-QLRT-CT99-1591 Chicken IMAGE). T.R. was supported by grants from the SABRE Integrated European project (FOOD-CT-2006-016250), and M.E.A. by grants from the French Ministere de la Recherche. We thank Dr F. Dautry for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Zoorob.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Additional data file 1

Table of putative ncRNAs associated data including localisation, comparison with previous study and expression information (XLS 52 kb)

Additional data file 2

Dendrograms of the 15 clusters obtained by k-mean clustering of both coding and non-coding transcripts based on expression levels from immune-related tissues (GIF 5841 kb)

High resolution image file (EPS 16775 kb)

Additional data file 3

Descriptions of the transcripts included in each expression cluster of the immune-related tissues analysis (TXT 138 kb)

Additional data file 4

Dendrograms of the 15 clusters obtained by k-mean clustering of both coding and non-coding transcripts based on expression levels from the IBDV infection (GIF 2032 kb)

High resolution image file (EPS 7938 kb)

Additional data file 5

Descriptions of the transcripts included in each expression cluster of the IBDV infection analysis (TXT 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahanda, ML.E., Ruby, T., Wittzell, H. et al. Non-coding RNAs revealed during identification of genes involved in chicken immune responses. Immunogenetics 61, 55–70 (2009). https://doi.org/10.1007/s00251-008-0337-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-008-0337-8

Keywords

Navigation