Skip to main content

Advertisement

Log in

Overexpression of the ATP-dependent helicase RecG improves resistance to weak organic acids in Escherichia coli

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Increased resistance to several weak organic acids was conferred on Escherichia coli by overexpression of the ATP-dependent helicase RecG and, to a lesser extent, by overexpressing the helicase RuvAB. This property of helicases was identified by reproducible selection of recG-bearing clones from genomic libraries of the acetate-resistant species Acetobacter aceti and Staphylococcus capitis. We show that overexpression of RecG from both species, but also from E. coli, increased the maximum biomass concentration attained by E. coli cultures that were grown in the presence of various weak organic acids and uncouplers. Furthermore, overexpression of RecG from A. aceti significantly improved the maximum growth rates of E. coli under weak organic acid challenge. Based on the known role of RecG in DNA replication/repair, our data provide a first indication that weak organic acids negatively affect DNA replication and/or repair, and that these negative effects may be counteracted by helicase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  • Aiba S, Humphrey AE, Millis NF (1973) Biochemical Engineering, 2nd edn. Academic Press, New York

  • Audia JP, Webb CC, Foster JW (2001) Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 291:97–106

    CAS  PubMed  Google Scholar 

  • Brul S, Coote P (1999) Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol 50:1–17

    CAS  Google Scholar 

  • Cherrington CA, Hinton M, Mead GC, Chopra I (1991) Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 32:87–108

    CAS  PubMed  Google Scholar 

  • Diez-Gonzalez F, Russell JB (1997) The ability of Escherichia coli O157:H7 to decrease its intracellular pH and resist the toxicity of acetic acid. Microbiology 143:1175–1180

    CAS  PubMed  Google Scholar 

  • Dürre P, Bahl H, Gottschalk G (1988) Membrane processes and product formation in anaerobes. In: Erickson LE, Fung DYC (eds) Handbook for anaerobic fermentations. Dekker, New York, pp 187–206

  • Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wüthrich K, Bailey JE, Sauer U (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:152–164

    Article  CAS  PubMed  Google Scholar 

  • Foster JW (1995) Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit Rev Microbiol 21:215–237

    CAS  PubMed  Google Scholar 

  • Freese E, Sheu CW, Galliers E (1973) Function of lipophilic acids as antimicrobial food additives. Nature 241:321–325

    PubMed  Google Scholar 

  • Hanna MN, Ferguson RJ, Li YH, Cvitkovitch DG (2001) uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 183:5964–5973

    Article  CAS  PubMed  Google Scholar 

  • Krebs HA, Wiggins D, Stubbs M, Sols A, Bedoya F (1983) Studies on the mechanism of the antifungal action of benzoate. Biochem J 214:657–663

    CAS  PubMed  Google Scholar 

  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240

    Article  CAS  PubMed  Google Scholar 

  • Lasko DR, Schwerdel C, Bailey JE, Sauer U (1997) Acetate-specific stress response in acetate-resistant bacteria: an analysis of protein patterns. Biotechnol Prog 13:519–523

    Article  CAS  PubMed  Google Scholar 

  • Lasko DR, Zamboni N, Sauer U (2000) The bacterial response to acetate challenge: a comparison of tolerance among species. Appl Microbiol Biotechnol 54:243–247

    CAS  PubMed  Google Scholar 

  • Lee SJ, Gralla JD (2001) Sigma38 (rpoS) RNA polymerase promoter engagement via −10 region nucleotides. J Biol Chem 276:30064–30071

    Article  CAS  PubMed  Google Scholar 

  • Lloyd RG, Sharples GJ (1991) Molecular organization and nucleotide sequence of the recG locus of Escherichia coli K-12. J Bacteriol 173:6837–6843

    CAS  PubMed  Google Scholar 

  • Lloyd RG, Sharples GJ (1993) Processing of recombination intermediates by the RecG and RuvAB proteins of Escherichia coli. Nucleic Acids Res 21:1719–1725

    CAS  PubMed  Google Scholar 

  • Mahdi AA, McGlynn P, Levett SD, Lloyd RG (1997) DNA binding and helicase domains of the Escherichia coli recombination protein RecG. Nucleic Acids Res 25:3875–3880

    Article  CAS  PubMed  Google Scholar 

  • McGlynn P, Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18:413–419

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Vasil ML, Alsabbagh E, Parvatiyar K, Hassett DJ (2000) Role of the Pseudomonas aeruginosa oxyR-recG operon in oxidative stress defense and DNA repair: oxyR-dependent regulation of katB-ankB, ahpB, and ahpC-ahpF. J Bacteriol 182:4533–4544

    Article  CAS  PubMed  Google Scholar 

  • Park YS, Toda K, Fukaya M, Okumura H, Kawamura Y (1991) Production of a high-concentration acetic-acid by Acetobacter aceti using a repeated fed-batch culture with cell recycling. Appl Microbiol Biotechnol 35:149–153

    CAS  Google Scholar 

  • Raja N, Goodson M, Smith DG, Rowbury RJ (1991) Decreased DNA damage by acid and increased repair of acid-damaged DNA in acid-habituated Escherichia coli. J Appl Bacteriol 70:507–511

    CAS  PubMed  Google Scholar 

  • Roe AJ, O'Byrne C, McLaggan D, Booth IR (2002) Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. Microbiology 148:2215–2222

    CAS  PubMed  Google Scholar 

  • Russell JB (1992) Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling. J Appl Bacteriol 73:363–370

    Google Scholar 

  • Russell JB, Diez-Gonzalez F (1998) The effects of fermentation acids on bacterial growth. Adv Microb Physiol 39:205–234

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sharples GJ, Ingleston SM, Lloyd RG (1999) Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. J Bacteriol 181:5543–5550

    CAS  PubMed  Google Scholar 

  • Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89

    CAS  PubMed  Google Scholar 

  • Sinha RP (1986) Toxicity of organic acids for repair-deficient strains of Escherichia coli. Appl Environ Microbiol 51:1364–1366

    CAS  PubMed  Google Scholar 

  • Steiner P, Sauer U (2001) Proteins induced during adaptation of Acetobacter aceti to high acetate concentrations. Appl Environ Microbiol 67:5474–5481

    Article  CAS  PubMed  Google Scholar 

  • Steiner P, Sauer U (2003) Long-term continuous evolution of acetate resistant Acetobacter aceti. Biotechnol Bioeng 83: DOI 10.1002/bit.10741

    Google Scholar 

  • Wise A, Brems R, Ramakrishnan V, Villarejo M (1996) Sequences in the −35 region of Escherichia coli rpoS-dependent genes promote transcription by EσS. J Bacteriol 178:2785–2793

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Marti for constructing the S. capitis library and for help with the selection experiment, H. Ernst for sequencing, and R. Stephan for providing chromosomal DNA of E. coli O157:H7. Funding from the ETH Forschungskommision is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Sauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, P., Sauer, U. Overexpression of the ATP-dependent helicase RecG improves resistance to weak organic acids in Escherichia coli . Appl Microbiol Biotechnol 63, 293–299 (2003). https://doi.org/10.1007/s00253-003-1405-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1405-5

Keywords

Navigation