Skip to main content
Log in

Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A fuel cell was used to enrich a microbial consortium generating electricity, using organic wastewater as the fuel. Within 30 days of enrichment the maximum current of 0.2 mA was generated with a resistance of 1 kΩ. Current generation was coupled to a fall in chemical oxygen demand from over 1,700 mg l−1 down to 50 mg l−1. Denaturing gradient gel electrophoresis showed a different microbial population in the enriched electrode from that in the sludge used as the inoculum. Electron microscopic observation showed a biofilm on the electrode surface and microbial clumps. Nanobacteria-like particles were present on the biofilm surface. Metabolic inhibitors and electron acceptors inhibited the current generation. 16S ribosomal RNA gene analysis showed a diverse bacterial population in the enrichment culture. These findings demonstrate that an electricity-generating microbial consortium can be enriched using a fuel cell and that the electrochemical activity is a form of anaerobic electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3a–f.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Allen RM, Bennetto HP (1993) Microbial fuel-cells: electricity production from carbohydrates. Appl Biochem Biotechnol 39:7–40

    Google Scholar 

  • Anderson RT, Rooneyvarga JN, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environ Sci Technol 32:1222–1229

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  PubMed  Google Scholar 

  • Caldwell DE, Korber DR, Lawrence JR (1992) Imaging of bacterial cells by fluorescence exclusion using scanning confocal laser microscopy. J Microbiol Methods 15:249–261

    Article  Google Scholar 

  • Chang IS, Kim BH, Kim DH, Lovitt RW, Sung HC (1999) Formulation of defined media for CO fermentation by Eubacterium limosum KIST612 and growth characteristics of the bacterium. J Biosci Bioeng 88:682–685

    Article  CAS  Google Scholar 

  • Dolfing J (1996) Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl Environ Microbiol 62:3554–3554

    CAS  Google Scholar 

  • Eaton AD, Clesceri LS, Greenberg AE (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington, D.C.

  • Gerhardt P (1993) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, D.C.

  • Haberman W, Pommer EH (1991) Biological fuel cells with sulphide storage capacity. Appl Microbiol Biotechnol 35:128–133

    Google Scholar 

  • Higgins IJ, Hill HAO (1985) Bioelectrochemistry. Essays Biochem 21:119–145

    CAS  PubMed  Google Scholar 

  • Jang JK, Pham TH, Chang IS, Kang KH, Moon H, Cho KS, Kim BH (2003) Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem (in press)

  • Kazumi J, Haggblom MM, Young LY (1995) Degradation of monochlorinated and nonchlorinated aromatic compounds under iron-reducing conditions. Appl Environ Microbiol 61:4069–4073

    CAS  Google Scholar 

  • Kim BH, Ikeda T, Park HS, Kim HJ, Hyun MS, Kano K, Takagi K, Tatsumi H (1999a) Electro-chemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnol Tech 13:475–478

    Article  CAS  Google Scholar 

  • Kim BH, Kim HJ, Hyun MS, Park DH (1999b) Direct electrode reaction of Fe(III) reducing bacterium Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131

    Article  Google Scholar 

  • Kim HJ, Park HS, Hyun MS, Chang IS, Kim M, Kim BH (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb Technol 30:145–152

    Article  CAS  Google Scholar 

  • Kim BH, Chang IS, Gil GC, Park HS, Kim HJ (2003) Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol Lett 25:541–545

    Article  CAS  PubMed  Google Scholar 

  • Kim TS, Kim BH (1988) Modulation of Clostridium acetobutylicum fermentation by electrochemically supplied reducing equivalent. Biotechnol Lett 10:123–128

    CAS  Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    CAS  PubMed  Google Scholar 

  • Lloyd JR, Sole VA, Van Praagh CVG, Lovely DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    PubMed  Google Scholar 

  • Lovley DR, Lonergan DJ (1998) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    Google Scholar 

  • Lovley DR, Phillips EJP (1986) Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51:683–689

    CAS  Google Scholar 

  • Muyzer G, Waal EC de, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  Google Scholar 

  • Myers CR, Myers JM (1992) Localization of cytochromes to the outer membrane of anaerobically grown Shewanella putrefaciens MR-1. J Bacteriol 174:3429–3438

    PubMed  Google Scholar 

  • Nealson KH, Saffarini DA (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343

    PubMed  Google Scholar 

  • Nevin KP, Lovley DR (2000) Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens. Appl Environ Microbiol 66:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Newman DK, Kolter R (2000) A role for excreted quinones in extracellular electron transfer. Nature 405:94–97

    Article  CAS  PubMed  Google Scholar 

  • Park DH, Zeikus JG (2000) Electricity generation in microbial fuel cell using neutral red as an electronophore. Appl Environ Microbiol 66:1292–1297

    PubMed  Google Scholar 

  • Park DH, Kim BH, Moore B, Hill HAO, Song MK, Rhee HW (1997) Electrode reaction of Desulfovibrio desulfuricans modified with organic conductive compounds. Biotechnol Tech 11:145–148

    Article  CAS  Google Scholar 

  • Park DH, Laivenieks M, Guettler MV, Jain MK, Zeikus JG (1999) Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl Environ Microbiol 65:2912–2917

    CAS  PubMed  Google Scholar 

  • Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III) reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306

    Article  CAS  Google Scholar 

  • Pham TH, Jang JK, Chang IS, Kim BH (2003) Cathode reaction in a mediator-less microbial fuel cell with graphite or platinum-coated graphite as the cathode. J Microbiol Biotechnol (in press)

  • Reimers CE, Tender LM, Fertig S, Wang W (2001) Harvesting energy from the marine sediment–water interface. Environ Sci Technol 35:192–195

    Article  CAS  PubMed  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA III, Holmes DE, Bond DR, Lowy DA, Pilobello K, Fertig SJ, Lovley DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    CAS  PubMed  Google Scholar 

  • Turick CE, Tisa LS, Caccavo F Jr (2002) Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. Appl Environ Microbiol 68:2436–2444

    Article  CAS  PubMed  Google Scholar 

  • Uosaki K, Hill HAO (1981) Adsorption behaviour of 4,4′-bipyridyl at a gold/water interface and its role in the electron transfer reaction between cytochrome c and a gold electrode. J Electroanal Chem 122:321–327

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Korea Institute of Science and Technology and The Ministry of Science and Technology (Evaluation and Planning under the National Research Laboratory Program) in Korea. Parts of this paper have been presented at the 98th General Meeting of the American Society for Microbiology (poster number I-12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, B.H., Park, H.S., Kim, H.J. et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl Microbiol Biotechnol 63, 672–681 (2004). https://doi.org/10.1007/s00253-003-1412-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1412-6

Keywords

Navigation