Skip to main content
Log in

Anaerobic degradation of monoaromatic hydrocarbons

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Over the last two decades significant advances have been made in our understanding of the anaerobic biodegradability of monoaromatic hydrocarbons. It is now known that compounds such as benzene, toluene, ethylbenzene, and all three xylene isomers can be biodegraded in the absence of oxygen by a broad diversity of organisms. These compounds have been shown to serve as carbon and energy sources for bacteria growing phototrophically, or respiratorily with nitrate, manganese, ferric iron, sulfate, or carbon dioxide as the sole electron acceptor. In addition, it has also been recently shown that complete degradation of monoaromatic hydrocarbons can also be coupled to the respiration of oxyanions of chlorine such as perchlorate or chlorate, or to the reduction of the quinone moieties of humic substances. Many pure cultures of hydrocarbon-degrading anaerobes now exist and some novel biochemical and genetic pathways have been identified. In general, a fumarate addition reaction is used as the initial activation step of the catabolic process of the corresponding monoaromatic hydrocarbon compounds. However, other reactions may alternatively be involved depending on the electron acceptor utilized or the compound being degraded. In the case of toluene, fumarate addition to the methyl group mediated by benzylsuccinate synthase appears to be the universal mechanism of activation and is now known to be utilized by anoxygenic phototrophs, nitrate-reducing, Fe(III)-reducing, sulfate-reducing, and methanogenic cultures. Many of these biochemical pathways produce unique extracellular intermediates that can be utilized as biomarkers for the monitoring of hydrocarbon degradation in anaerobic natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achenbach LA, Coates JD (2000) Disparity between bacterial phylogeny and physiology. ASM News 66:714–716

    Google Scholar 

  • Achenbach LA, Bruce RA, Michaelidou U, Coates JD (2001) Dechloromonas agitata N.N. gen., sp. nov. and Dechlorosoma suillum N.N. gen., sp. nov. Two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol 51:527–533

    CAS  PubMed  Google Scholar 

  • Ahad JME, Lollar BS, Edwards EA, Slater GF, Sleep BE (2000) Carbon isotope fractionation during anaerobic biodegradation of toluene: implications for intrinsic bioremediation. Environ Sci Technol 34:892–896

    Article  CAS  Google Scholar 

  • Anders H, Kaetzke A, Kaempfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K-172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45:327–333

    PubMed  Google Scholar 

  • Anderson RT, Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv Microb Ecol 15:289–350

    CAS  Google Scholar 

  • Anderson RT, Lovley DR (1999) Naphthalene and benzene degradation under Fe(III)-reducing conditions in petroleum-contaminated aquifers. Bioremed J 3:121–135

    CAS  Google Scholar 

  • Anderson RT, Rooney-Varga J, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers. Environ Sci Technol 32:1222–1229

    Article  CAS  Google Scholar 

  • Atlas RM (1977) Stimulated petroleum biodegradation. Crit Rev Microbiol 5:371–386

    CAS  Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol Rev 45:180–209

    CAS  PubMed  Google Scholar 

  • Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Poll Bull 31:178–182

    Article  CAS  Google Scholar 

  • Bailey NJL, Krouse HR, Evans CR, Rogers MA (1973) Alteration of crude oil by waters and bacteria—evidence from geochemical and isotope studies. Am Assoc Petrol Geol Bull 57:1276

    CAS  Google Scholar 

  • Ball HA, Johnson HA, Reinhard M, Spormann AM (1996) Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J Bacteriol 178:5755–5761

    CAS  PubMed  Google Scholar 

  • Beller HR (2000) Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation 11:125–139

    Article  CAS  PubMed  Google Scholar 

  • Beller HR (2002) Analysis of benzylsuccinates in groundwater by liquid chromatography/tandem mass spectrometry and its use for monitoring in situ BTEX biodegradation. Environ Sci Technol 36:2724–2728

    Article  CAS  PubMed  Google Scholar 

  • Beller HR, Spormann AM (1997a) Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J Bacteriol 179:670–676

    CAS  PubMed  Google Scholar 

  • Beller HR, Spormann AM (1997b) Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl Environ Microbiol 63:3729–3731

    CAS  Google Scholar 

  • Beller HR, Spormann AM (1999) Substrate range of benzylsuccinate synthase from Azoarcus sp. strain T. FEMS Microbiol Lett 178:147–153

    CAS  PubMed  Google Scholar 

  • Beller HR, Ding W-H, Reinhard M (1995) Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ Sci Technol 29:2864–2870

    CAS  Google Scholar 

  • Beller HR, Spormann AM, Sharma PK, Cole JR, Reinhard M (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl Environ Microbiol 62:1188–1196

    CAS  PubMed  Google Scholar 

  • Biegert T, Fuchs G, Heider J (1996) Evidence that oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur J Biochem 238:661–668

    CAS  PubMed  Google Scholar 

  • Boll M, Fuchs G (1995) Benzoyl-coenzyme A reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. ATP dependence of the reaction, purification and some properties of the enzyme from Thauera aromatica strain K172. Eur J Biochem 234:921–933

    CAS  PubMed  Google Scholar 

  • Boll M, Albracht SJP, Fuchs G (1997) Benzoyl-CoA reductase (dearomatizing), a key enzyme of anaerobic aromatic metabolism. A study of adenosinephosphate activity, ATP stoichiometry of the reaction and EPR properties of the enzyme. Eur J Biochem 244:840–851

    CAS  PubMed  Google Scholar 

  • Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611

    Article  CAS  PubMed  Google Scholar 

  • Bruce RA, Achenbach LA, Coates JD (1999) Reduction of (per)chlorate by a novel organism isolated from a paper mill waste. Environ Microbiol 1:319–331

    Article  CAS  PubMed  Google Scholar 

  • Burland SM, Edwards EA (1999) Anaerobic benzene biodegradation linked to nitrate reduction. Appl Environ Microbiol 65:529–533

    CAS  PubMed  Google Scholar 

  • Caldwell ME, Suflita JM (2000) Detection of phenol and benzoate as intermediates of anaerobic benzene biodegradation under different terminal electron-accepting conditions. Environ Sci Technol 34:1216–1220

    Article  CAS  Google Scholar 

  • Cerniglia CE (1984a) Microbial metabolism of polycyclic aromatic hydrocarbons. In: Laskin A (ed) Advances in applied microbiology. Academic Press, New York, pp 31–71

  • Cerniglia CE (1984b) Microbial transformations of aromatic compounds. In: Atlas RM (ed) Petroleum microbiology. MacMillan, New York, pp 99–128

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Cervantes FJ, Dijksma W, Duong-Dac T, Ivanova A, Lettinga G, Field JA (2001) Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl Environ Microbiol 67:4471–4478

    Article  CAS  PubMed  Google Scholar 

  • Christensen T, Kjeldsen P, Albrechtsen H, Heron G (1994) Attenuation of pollutants in landfill leachate polluted aquifers. Crit Rev Environ Sci Technol 24:119–202

    CAS  Google Scholar 

  • Cloud PE, Friedman I, Sesler FD (1958) Microbiological fractionation of the hydrogen isotopes. Science 127:1394

    CAS  PubMed  Google Scholar 

  • Coates JD (2003) Bacteria that respire oxyanions of chlorine. In: Brenner D, Krieg N, Staley J, Garrity G (eds) Bergey’s manual of systematic bacteriology. Springer, New York Berlin Heidelberg

  • Coates JD, Achenbach LA (2001) The biogeochemistry of aquifer systems. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MW (eds) Manual of environmental microbiology. ASM Press, Washington, D.C., pp 719–727

  • Coates JD, Lovley DR (2003) Genus Geobacter. In: Brenner D, Krieg N, Staley J, Garrity G (eds) Bergey’s manual of systematic bacteriology. Springer, New York Berlin Heidelberg

  • Coates JD, Anderson RT, Lovley DR (1996a) Anaerobic oxidation of polycyclic aromatic hydrocarbons under sulphate-reducing conditions. Appl Environ Microbiol 62:1099–1101

    CAS  Google Scholar 

  • Coates JD, Anderson RT, Woodward JC, Phillips EJP, Lovely DR (1996b) Anaerobic hydrocarbon degradation in petroleum-contaminated harbor sediments under sulfate-reducing and artificially imposed iron-reducing conditions. Environ Sci Technol 30:2784–2789

    Article  Google Scholar 

  • Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovley DR (1996c) Isolation of Geobacter species from a variety of sedimentary environments. Appl Environ Microbiol 62:1531–1536

    Google Scholar 

  • Coates JD, Woodward J, Allen J, Philp P, Lovley DR (1997) Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl Environ Microbiol 63:3589–3593

    CAS  PubMed  Google Scholar 

  • Coates JD, Michaelidou U, Bruce RA, O’Connor SM, Crespi JN, Achenbach LA (1999) The ubiquity and diversity of dissimilatory (per)chlorate-reducing bacteria. Appl Environ Microbiol 65:5234–5241

    CAS  PubMed  Google Scholar 

  • Coates JD, Bhupathiraju V, Achenbach LA, McInerney MJ, Lovley DR (2001a) Geobacter hydrogenophilus, Geobacter chapellei, and Geobacter grbiciae—three new strictly anaerobic dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588

    CAS  PubMed  Google Scholar 

  • Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001b) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    Article  CAS  PubMed  Google Scholar 

  • Coates JD, Chakraborty R, McInerney MJ (2002) Anaerobic benzene biodegradation—a new era. Res Microbiol 153:621–628

    Article  CAS  PubMed  Google Scholar 

  • Coleman ML, Ader M, Chaudhuri S, Coates JD (2003) Microbial isotopic fractionation of perchlorate chlorine. Appl Environ Microbiol 69:4997–5000

    Article  CAS  PubMed  Google Scholar 

  • Coschigano PW (1999) Transcriptional analysis of the tutEtutFDGH gene cluster from the denitrifying bacterium Thauera aromatica strain T1. Appl Environ Microbiol 66:1147–1151

    Article  Google Scholar 

  • Coschigano PW, Young LY (1997) Identification and sequence analysis of two regulatory genes involved in anaerobic toluene metabolism by strain T1. Appl Environ Microbiol 63:652–660

    CAS  PubMed  Google Scholar 

  • Dolfing J, Zeyer J, Binder-Eicher P, Schwarzenbach RP (1990) Isolation and characterization of a bacterium that mineralizes toluene in the absence of molecular oxygen. Arch Microbiol 134:336–341

    Google Scholar 

  • Edwards EA, Wills LE, Reinhard M, Grbi’c-Gali’c D (1992) Anaerobic degradation of toluene and xylene by aquifer microorganisms under sulfate-reducing conditions. Appl Environ Microbiol 58:794–800

    PubMed  Google Scholar 

  • Elshahed MS, Gieg LM, McInerney MJ, Suflita JM (2001) Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ Sci Technol 35:682–689

    Article  CAS  PubMed  Google Scholar 

  • Evans PJ, Mang DT, Kim KS, Young LY (1991a) Anaerobic degradation of toluene by a denitrifying bacterium. Appl Environ Microbiol 57:1139–1145

    CAS  PubMed  Google Scholar 

  • Evans PJ, Mang DT, Young LY (1991b) Degradation of toluene and m-xylene and transformation of o-xylene by denitrifying enrichment cultures. Appl Environ Microbiol 57:450–454

    CAS  PubMed  Google Scholar 

  • Fries MR, Zhou J, Chee-Sanford J, Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60:2802–2810

    CAS  PubMed  Google Scholar 

  • Galushko A, Minz D, Schink B, Widdel F (1999) Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulfate-reducing bacterium. Environ Microbiol 1:1–23

    Article  PubMed  Google Scholar 

  • Gibson J, Harwood CS (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369

    Article  CAS  PubMed  Google Scholar 

  • Gibson DT, Parales RE (2000) Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol 11:236–243

    CAS  PubMed  Google Scholar 

  • Gibson DT, Cardini GE, Maseles FC, Kallio RE (1970) Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochemistry 9:1631–1635

    CAS  PubMed  Google Scholar 

  • Grbi’c-Gali’c D, Vogel T (1987) Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53:254–260

    CAS  PubMed  Google Scholar 

  • Hall JA, Kalin RM, Larkin MJ, Allen CCR, Harper DB (1999) Variation in stable carbon isotope fractionation during aerobic degradation of phenol and benzoate by contaminant degrading bacteria. Org Geochem 30:801–811

    Article  CAS  Google Scholar 

  • Haner A, Hohener P, Zeyer J (1995) Degradation of p-xylene by a denitrifying enrichment culture. Appl Environ Microbiol 61:3185–3188

    PubMed  Google Scholar 

  • Harms G, Rabus R, Widdel F (1999a) Anaerobic oxidation of the aromatic plant hydrocarbon p-cymene by newly isolated denitrifying bacteria. Arch Microbiol 172:303–312

    Article  CAS  PubMed  Google Scholar 

  • Harms G, Zengler K, Rabus R, Aeckersberg F, Minz D, Rossello-Mora R, Widdel F (1999b) Anaerobic oxidation of o-xylene, m-xylene and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl Environ Microbiol 65:999–1004

    CAS  PubMed  Google Scholar 

  • Harrison AG, Thode HG (1957) Mechanism of the bacterial fractionation of sulphate from isotope fractionation studies. Faraday Soc Trans 54:84

    Google Scholar 

  • Heider J, Fuchs G (1997) Anaerobic metabolism of aromatic compounds. Eur J Biochem 243:577–596

    CAS  PubMed  Google Scholar 

  • Heider J, Spormann AM, Beller HR, Widdel F (1998) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473

    CAS  Google Scholar 

  • Hess A, Zarda B, Hahn D, Haner A, Stax D, Hohener P, Zeyer J (1997) In situ analysis of denitrifying toluene- and m-xylene degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl Environ Microbiol 65:2136–2141

    Google Scholar 

  • Johnson HA, Pelletier DA, Spormann AM (2001) Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J Bacteriol 183:4536–4542

    CAS  PubMed  Google Scholar 

  • Kane SR, Beller HR, Legler TC, Anderson RT (2002) Biochemical and genetic evidence of benzylsuccinate synthase in toluene-degrading, ferric iron-reducing Geobacter metallireducens. Biodegradation 13:149–154

    Article  CAS  PubMed  Google Scholar 

  • Kazumi J, Caldwell ME, Suflita JM, Lovley DR, Young LY (1997) Anaerobic degradation of benzene in diverse anoxic environments. Environ Sci Technol 31:813–818

    Article  CAS  Google Scholar 

  • Kniemeyer O, Fischer T, Wilkes H, Glockner F, Widdel F (2003) Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl Environ Microbiol 69:760–768

    Article  CAS  PubMed  Google Scholar 

  • Krichevsky MI, Sesler FD, Friedman I, Newell M (1961) Deuterium fractionation during molecular H2 formation in a marine pseudomonad. J Mar Biol 236:2520

    CAS  Google Scholar 

  • Krieger CJ (1999) Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J Bacteriol 181:6403–6410

    CAS  PubMed  Google Scholar 

  • Kropp KG, Davidova IA, Suflita JM (2000) Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl Environ Microbiol 66:5393–5398

    CAS  PubMed  Google Scholar 

  • Ku TCW, Walter LM, Coleman ML, Blake RE, Martini AM (1999) Coupling between sulfur recycling and syndepositional carbonate dissolution: evidence from oxygen and sulfur isotope composition of pore water sulfate, South Florida Platform, USA. Geochim Cosmochim Acta 63:2529–2546

    Article  CAS  Google Scholar 

  • Kuhn EP, Zeyer J, Eicher P, Schwarzenbach RP (1988) Anaerobic degradation of alkylated benzenes in denitrifying laboratory aquifer columns. Appl Environ Microbiol 54:490–496

    CAS  PubMed  Google Scholar 

  • Langenhoff AAM, Brouwers-Ceiler DL, Engelberting JHL, Quist JJ, Wolkenfelt JGPN, Zehnder AJB, Schraa G (1997) Microbial reduction of manganese coupled to toluene oxidation. FEMS Microbiol Ecol 22:119–127

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  PubMed  Google Scholar 

  • Leuthner B, Leutwein C, Schulz H, Horth P, Haehnel W, Schiltz E, Schagger H, Heider J (1998) Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalysing the first step in anaerobic toluene metabolism. Mol Microbiol 28:615–628

    Google Scholar 

  • Lonergan DJ, Lovley DR (1991) Microbial oxidation of natural and anthropogenic aromatic compounds coupled to Fe(III) reduction. In: Baker RA (ed) Organic substances and sediments in water. Lewis, Chelsea, Mich., pp 327–338

  • Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J Ind Microbiol 18:75–81

    Article  CAS  Google Scholar 

  • Lovley DR, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and p-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  Google Scholar 

  • Lovley DR, Baedecker MJ, Lonergan DJ, Cozzarelli IM, Phillips EJP, Siegel DI (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339:297–299

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370:128–131

    PubMed  Google Scholar 

  • Lovley DR, Coates JD, Woodward JC, Phillips EJP (1995) Benzene oxidation coupled to sulfate reduction. Appl Environ Microbiol 61:953–958

    CAS  Google Scholar 

  • Lovley DR, Woodward JC, Chapelle FH (1996) Rapid anaerobic benzene degradation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62:288–291

    Google Scholar 

  • Mancini SA, Ulrich AC, Lacrampe-Couloume G, Sleep B, Edwards EA, Lollar BS (2003) Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl Environ Microbiol 69:191–198

    Article  CAS  PubMed  Google Scholar 

  • Meckenstock RU (1999) Fermentative toluene degradation in anaerobic defined syntrophic cocultures. FEMS Microbiol Lett 177:67–73

    Article  CAS  PubMed  Google Scholar 

  • Morasch B, Richnow H, Schink B, Meckenstock R (2001) Stable hydrogen and carbon isotope fractionation during microbial toluene degradation: mechanistic and environmental aspects. Appl Environ Microbiol 67:4842–4849

    Article  CAS  PubMed  Google Scholar 

  • Nissenbaum A, Presley BJ, Kaplan IR (1972) Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia, I, Chemical and isotopic changes in major components of interstitial water. Geochim Cosmochim Acta 36:1007–1027

    Article  CAS  Google Scholar 

  • Pelz O, Chatzinotas A, Zarda-Hess A, Wolf-Rainer A, Zeyer J (2001) Tracing toluene-assimilating sulfate-reducing bacteria using 13C-incorporation in fatty acids and whole-cell hybridization. FEMS Microbiol Ecol 38:123–131

    Article  CAS  Google Scholar 

  • Phelps CD, Kazumi J, Young LY (1996) Anaerobic degradation of benzene in BTX mixtures dependent on sulfate reduction. FEMS Microbiol Lett 145:433–437

    Article  CAS  PubMed  Google Scholar 

  • Phelps CD, Kerkhof LJ, Young LY (1998) Molecular characterization of a sulfate-reducing consortium which mineralizes benzene. FEMS Microbiol Ecol 27:269–279

    CAS  Google Scholar 

  • Phelps CD, Zhang X, Young LY (2001) Use of stable isotopes to identify benzoate as a metabolite of benzene degradation in a sulphidogenic consortium. Environ Microbiol 3:600–603

    Article  CAS  PubMed  Google Scholar 

  • Rabus R, Heider J (1998) Initial reactions of anaeobic metabolism of alkylbenzeness in denitrifying and sulfate-reducing bacteria. Arch Microbiol 170:377–384

    Article  CAS  Google Scholar 

  • Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    CAS  PubMed  Google Scholar 

  • Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451

    CAS  PubMed  Google Scholar 

  • Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Pierik AJ, Widdel F (2001) Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J Bacteriol 183:1707–1715

    CAS  PubMed  Google Scholar 

  • Rabus R, Kube A, Beck F, Widdel F, Reinhardt R (2002) Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EbN1. Arch Microbiol 178:506–516

    Article  CAS  PubMed  Google Scholar 

  • Reusser DE, Istok JD, Beller HR, Field JA (2002) In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ Sci Technol 36:4127–4134

    Article  CAS  PubMed  Google Scholar 

  • Ridgeway HF, Safarik J, Phipps D, Carl P, Clark D (1990) Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer. Appl Environ Microbiol 56:3565–3575

    CAS  PubMed  Google Scholar 

  • Rooney-Varga JN, Anderson RT, Fraga JL (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    CAS  PubMed  Google Scholar 

  • Schocher RJ, Seyfried B, Vazquez F, Zeyer J (1991) Anaerobic degradation of toluene by pure cultures of denitrifying bacteria. Arch Microbiol 157:7–12

    CAS  PubMed  Google Scholar 

  • Spormann AM, Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11:85–105

    CAS  PubMed  Google Scholar 

  • Stone RW, Zobell CE (1952) Bacterial aspects of the origin of petroleum. Ind Eng Chem 44:2564–2567

    CAS  Google Scholar 

  • Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene-degrading mixed cultures. Environ Microbiol 5:92–102

    Article  CAS  PubMed  Google Scholar 

  • Urbansky ET (1998) Perchlorate chemistry: implications for analysis and remediation. Bioremed J 2:81–95

    CAS  Google Scholar 

  • Vogel TM, Grbi’c-Gali’c D (1986) Incorporation of oxygen from water into toluene and benzene during anaerobic fermentative transformation. Appl Environ Microbiol 52:200–202

    CAS  Google Scholar 

  • Weiner J, Lovley DR (1998a) Anaerobic benzene degradation in petroleum-contaminated sediments after inoculation with a benzene-oxidizing enrichment. Appl Environ Microbiol 64:775–778

    CAS  PubMed  Google Scholar 

  • Weiner J, Lovley DR (1998b) Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl Environ Microbiol 64:1937–1939

    CAS  PubMed  Google Scholar 

  • Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. Springer, New York Berlin Heidelberg, pp 3353–3378

  • Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12:259–276

    Google Scholar 

  • Zengler K, Heider J, Rossello’-Mora R, Widdel F (1999) Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch Microbiol 172:204–212

    CAS  PubMed  Google Scholar 

  • Zhang X, Young LY (1997) Carboxylation as an initial reaction in the anaerobic metabolism of napthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol 63:4759–4764

    CAS  PubMed  Google Scholar 

  • Zhou J, Fries MR, Chee-Sandford JC, Tiedje JM (1995) Phylogenetic analysis of a new group of denitrifiers capable of anaerobic growth on toluene and description of Azoarcus tolulyticus sp. nov. Int J Syst Bacteriol 45:500–506

    CAS  PubMed  Google Scholar 

  • Zobell CE (1945) The role of bacteria in the formation and transformation of petroleum hydrocarbons. Science 102:364–369

    CAS  Google Scholar 

  • Zobell CE (1946) Action of microorganisms on hydrocarbons. Bacteriol Rev 10:1–49

    CAS  Google Scholar 

  • Zobell CE (1949) Part played by bacteria in petroleum formation. Am J Bot 36:832–832

    Google Scholar 

  • Zobell CE (1950) Assimilation of hydrocarbons by microorganisms. Adv Enzymol Rel Subj Biochem 10:443–486

    CAS  Google Scholar 

Download references

Acknowledgements

The research of J.D.C. in bioremediation and perchlorate reduction is supported by grants from the United States Department of Energy NABIR program (DE-FG02-98-ER-62689) and the United States Department of Defense (DACA72-00-C-0016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Coates.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, R., Coates, J.D. Anaerobic degradation of monoaromatic hydrocarbons. Appl Microbiol Biotechnol 64, 437–446 (2004). https://doi.org/10.1007/s00253-003-1526-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-003-1526-x

Keywords

Navigation