Skip to main content
Log in

Biotransformation of β-ionone by engineered cytochrome P450 BM-3

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Wild-type cytochrome P450 monooxygenase from Bacillus megaterium (P450 BM-3) has a low hydroxylation activity for β-ionone (<1 min−1). Substitution of phenylalanine by valine at position 87 led to a more than 100-fold increase in β-ionone hydroxylation activity (115 min−1). Enzyme activity could be further increased by both site-directed and random mutagenesis. The mutant R47L Y51F F87V, designed by site-directed mutagenesis, and the mutant A74E F87V P386S, obtained after two rounds of error-prone polymerase chain reaction, exhibited an increase in activity of up to 300-fold compared to the wild-type enzyme. The triple mutant R47 LY51F F87V exhibited moderate enantioselectivity, forming (R)-4-hydroxy-β-ionone with an optical purity of 39%. All mutants regioselectively converted β-ionone into 4-hydroxy-β-ionone. The regioselectivity is determined amongst others by the absolute configuration of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Appel D, Lutz-Wahl S, Fischer P, Schwaneberg U, Schmid RD (2001) A P450 BM-3 mutant hydroxylates alkanes, cycloalkanes, arenes and heteroarenes. J Biotechnol 88:167–171

    Article  CAS  Google Scholar 

  • Carmichael AB, Wong LL (2001) Protein engineering of Bacillus megaterium CYP102. The oxidation of polycyclic aromatic hydrocarbons. Eur J Biochem 268:3117–3125

    Article  CAS  Google Scholar 

  • Cowart LA, Falck JR, Capdevila JH (2001) Structural determinants of active site binding affinity and metabolism by cytochrome P450 BM-3. Arch Biochem Biophys 387:117–124

    Article  CAS  Google Scholar 

  • Donaldson JMI, McGovern TP, Ladd TLJ (1990) Floral attractants for the Cetoniinae and Rutelinae (Coleoptera: Scarabaeidae). J Econ Entomol 83:1298–1305

    Article  CAS  Google Scholar 

  • Eschenmoser W, Uevelhart P, Eugster CH (1981) Synthesis and structure of the enantiomeric 6-hydroxy-α-ionone and cis- and trans-5,6-dihydroxy-5,6-dihydro-β-ionone. Helv Chim Acta 64:2681–2690

    Article  CAS  Google Scholar 

  • Eugster CH, Maerki-Fischer E (1991) The chemistry of rose pigments. Angew Chem Int Ed Engl 30:654–672

    Article  Google Scholar 

  • Glieder A, Farinas ET, Arnold FH (2002) Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. Nat Biotechnol 20:1135–1139

    Article  CAS  Google Scholar 

  • Gorsky LD, Koop DR, Coon MJ (1984) On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J Biol Chem 259:6812–6817

    CAS  PubMed  Google Scholar 

  • Graham-Lorence S, Truan G, Peterson JA, Falck JR, Wei S, Helvig C, Capdevila JH (1997) An active site substitution, F87V, converts cytochrome P450 BM-3 into a regio- and stereoselective (14S,15R)-arachidonic acid epoxygenase. J Biol Chem 272:1127–1135

    Article  CAS  Google Scholar 

  • Haag A, Eschenmoser W, Eugster CH (1980) Synthese von (−)-(R)-4-hydroxy-β-ionone and (−)-(5R,6S)-5-Hydroxy-4,5-dihydro-α-ionone aus (−)-(S)-α-ionone. Helv Chim Acta 63:10–15

    Article  CAS  Google Scholar 

  • Ide H, Toki S (1970) Metabolism of β-ionone. Isolation, characterization and identification of the metabolites in the urine of rabbits. Biochem J 119:281–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kakeya H, Sugai T, Ohta H (1991) Biochemical preparation of optically active 4-hydroxy-β-ionone and its transformation to (S)-6-hydoxy-α-ionone. Agric Biol Chem 55:1873–1876

    CAS  Google Scholar 

  • Krasnobajew V, Helmlinger D (1982) Fermentation of fragrances: biotransformation of β-ionone by Lasiodiplodia theobromae. Helv Chim Acta 65:1590–1601

    Article  CAS  Google Scholar 

  • Li H, Poulos TL (1997) The structure of the cytochrome P450 BM-3 haem domain complexed with the fatty acid substrate, palmitoleic acid. Nat Struct Biol 4:140–146

    Article  CAS  Google Scholar 

  • Li QS, Ogawa J, Schmid RD, Shimizu S (2001a) Engineering cytochrome P450 BM-3 for oxidation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67:5735–5739

    Article  CAS  Google Scholar 

  • Li QS, Ogawa J, Schmid RD, Shimizu S (2001b) Residue size at position 87 of cytochrome P450 BM-3 determines its stereoselectivity in propylbenzene and 3-chlorostyrene oxidation. FEBS Lett 508:249–252

    Article  CAS  Google Scholar 

  • Li QS, Schwaneberg U, Fischer M, Schmitt J, Pleiss J, Lutz-Wahl S, Schmid RD (2001c) Rational evolution of a medium chain-specific cytochrome P-450 BM-3 variant. Biochim Biophys Acta 1545:114–121

    Article  CAS  Google Scholar 

  • Lutz-Wahl S, Fischer P, Schmidt-Dannert C, Wohlleben W, Hauer B, Schmid RD (1998) Stereo- and regioselective hydroxylation of α-ionone by Streptomyces strains. Appl Environ Microbiol 64:3878–3881

    Article  CAS  Google Scholar 

  • Maurer S, Urlacher V, Schulze H, Schmid RD (2003) Immobilisation of P450 BM-3 and an NADP+ cofactor recycling system: towards a technical application of heme-containing monooxygenases in fine chemical synthesis. Adv Synth Catal 345:802–810

    Article  CAS  Google Scholar 

  • McQuate GT, Peck SL (2001) Enhancement of attraction of α-ionol to male Bactrocera latifrons (Diptera: Tephritidae) by addition of a synergist, cade oil. J Econ Entomol 94:39–46

    Article  CAS  Google Scholar 

  • Narhi LO, Fulco AJ (1986) Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium. J Biol Chem 261:7160–7169

    CAS  PubMed  Google Scholar 

  • Narhi LO, Wen LP, Fulco AJ (1988) Characterization of the protein expressed in Escherichia coli by a recombinant plasmid containing the Bacillus megaterium cytochrome P-450 BM-3 gene. Mol Cell Biochem 79:63–71

    Article  CAS  Google Scholar 

  • Omura T, Sato RJ (1964) The carbon monoxide-binding pigment of liver microsomes. I Evidence for its hemoprotein nature. J Biol Chem 239:2370–2378

    CAS  PubMed  Google Scholar 

  • Oritani T, Yamashita K (1984) Biological activity and structure of abscisic acid. Kagaku to Seibutsu 22:21–28

    Article  CAS  Google Scholar 

  • Peters MW, Meinhold P, Glieder A, Arnold FH (2003) Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. J Am Chem Soc 125:13442–13450

    Article  CAS  Google Scholar 

  • Ravichandran KG, Boddupalli SS, Hasermann CA, Peterson JA, Deisenhofer J (1993) Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450's. Science 261:731–736

    Article  CAS  Google Scholar 

  • Sambook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sefton MA, Skouroumounis GK, Massy-Westropp RA, Williams PJ (1989) Norisoprenoids in Vitis vinifera white wine grapes and the identification of a precursor of damascenone in these fruits. Aust J Chem 42:2071–2084

    Article  CAS  Google Scholar 

  • Sevrioukova IF, Hazzard JT, Tollin G, Poulos TL (1999) The FMN to heme electron transfer in cytochrome P450 BM-3. Effect of chemical modification of cysteines engineered at the FMN-heme domain interaction site. J Biol Chem 274:36097–36106

    Article  CAS  Google Scholar 

  • Sode K, Karube I, Araki R, Mikami Y (1989) Microbial conversion of β-ionone by immobilized Aspergillus niger in the presence of an organic solvent. Biotechnol Bioeng 33:1191–1195

    Article  CAS  Google Scholar 

  • Sowden RJ, Yasmin S, Rees NH, Bell SG, Wong LL (2005) Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450 BM-3. Org Biomol Chem 3:57–64

    Article  CAS  Google Scholar 

  • Sulistyaningdyah WT, Ogawa J, Li QS, Maeda C, Yano Y, Schmid RD, Shimizu S (2004) Hydroxylation activity of P450 BM-3 mutant F87V towards aromatic compounds and its application to the synthesis of hydroquinone derivatives from phenolic compounds. Appl Microbiol Biotechnol [Epub ahead of print]

  • Truan G, Komandla MR, Falck JR, Peterson JA (1999) P450BM-3: absolute configuration of the primary metabolites of palmitic acid. Arch Biochem Biophys 366:192–198

    Article  CAS  Google Scholar 

  • Vandeyar MA, Weiner MP, Hutton CJ, Batt CA (1988) A simple and rapid method for the selection of oligodeoxynucleotide-directed mutants. Gene 65:129–133

    Article  CAS  Google Scholar 

  • Wong LL, Bell SG, Carmichael AB (2000) Process for oxidising terpenes. European Patent WO 00/31273, 2 June 2000

Download references

Acknowledgements

We would like to thank BASF AG for providing 3-hydroxy-β-ionone. This work has been supported by the German Research Foundation (DFG; Project SCHM 1240/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlada B. Urlacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urlacher, V.B., Makhsumkhanov, A. & Schmid, R.D. Biotransformation of β-ionone by engineered cytochrome P450 BM-3. Appl Microbiol Biotechnol 70, 53–59 (2006). https://doi.org/10.1007/s00253-005-0028-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0028-4

Keywords

Navigation