Skip to main content
Log in

Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying β-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aristidou A, Penttilä M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) Photometric methods for protein determination. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Cho KM, Yoo YJ (1999) Novel SSF process for ethanol production from microcrystalline cellulose using δ-integrated recombinant yeast, Saccharomyces cerevisiae L2612δGC. J Microbiol Biotechnol 9:340–345

    CAS  Google Scholar 

  • Claassen PAM, van Lier JB, Lopez Contreras AM, van Niel EMJ, Sijtsma L, Stams AJM, de Vries SS, Weusthuis RA (1999) Utilization of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  CAS  Google Scholar 

  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in minimal medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farone WA, Cuzens JE (1997) Strong acid hydrolysis of cellulosic and hemicellulosic materials. US Patent 5597714

  • Farone WA, Cuzens JE (1998) Method of removing silica or silicates from solids resulting from the strong acid hydrolysis of cellulosic and hemicellulosic materials. US Patent 5782982

  • Fujita Y, Takasaki S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol 68:5136–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo H (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzymes. Appl Environ Microbiol 70:1207–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn-Hägerdal B, Wahlbom CF, Gardonyi M, Zyl WH van, Cordero Otero RR, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv Biochem Eng Biotechnol 73:53–84

    PubMed  Google Scholar 

  • Ho NW, Lin FP, Huang S, Andrews PC, Tsao GT (1990) Purification, characterization, and amino terminal sequence of xylose reductase from Candida shehatae. Enzyme Microb Technol 12:33–39

    Article  CAS  PubMed  Google Scholar 

  • Ho NW, Chen Z, and Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ho NW, Chen Z, Brainard AP, Sedlak M (1999) Successful design and development of genetically engineered Saccharomyces yeasts for effective co-fermentation of glucose and xylose from cellulosic biomass to fuel ethanol. Adv Biochem Eng Biotechnol 65:163–192

    CAS  PubMed  Google Scholar 

  • Jeffries TW, Jin YS (2004) Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol 63:495–509

    Article  CAS  PubMed  Google Scholar 

  • Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2002) Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol 68:1604–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JK, Bong-Seong K, Sang-Yong K (2003) Cloning and characterization of xyl1 gene, encoding an NADH-pefering xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipke PN, Wojciechowicz D, Kurjan J (1989) AGα1 is the structural gene for the Saccharomyces cerevisiae α-agglutinin, a cell surface glycoprotein involved in cell–cell interactions during mating. Mol Cell Biol 9:3155–3165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMillan JD (1997) Bioethanol production: status and prospects. Renew Energy 10:295–302

    Article  CAS  Google Scholar 

  • Murai T, Ueda M, Kawaguchi T, Arai M, Tanaka A (1998) Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing β-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl Environ Microbiol 64:4857–4861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olsson L, Hahn-Hägerdal B (1993) Fermentative performance of bacteria and yeasts in lignocellulose hydrolysate. Proc Biochem 28:249–257

    Article  CAS  Google Scholar 

  • Ryabova OB, Chmil OM, Sibirny AA (2003) Xylose and cellobiose fermentation to ethanol by the thermotolerant methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 4:157–164

    Article  CAS  PubMed  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol 30:279–291

    CAS  Google Scholar 

  • Shamanna DK, Sanderson KE (1979) Uptake and catabolism d-xylose in Salmonella typhimurium LT2. J Bacteriol 139:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smiley KL, Bolen PL (1982) Demonstration of d-xylose reductase and d-xylitol dehydrogenase in Pachysolen tannophilus. Biotecnol Lett 4:607–610

    Article  CAS  Google Scholar 

  • Sonderegger M, Jeppson M, Larsson C, Gorwa-Grauslund MF, Boles E, Olsson L, Spencer-Martins I, Hähn-Hagerdal B, Sauer U (2004) Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 87:90–98

    Article  CAS  PubMed  Google Scholar 

  • Tajima M, Nogi Y, Fukasawa T (1985) Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast 1:67–77

    Article  CAS  PubMed  Google Scholar 

  • Toivari MH, Aristidou A, Ruohonen L, Penttilä M (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng 3:236–249

    Article  CAS  PubMed  Google Scholar 

  • van Rensburg P, van Zyl WH, Pretorius IS (1998) Engineering yeast for efficient cellulose degradation. Yeast 14:67–76

    Article  PubMed  Google Scholar 

  • Verduyn C, van Kleef R, Frank J, Schreuder H, van Dijken JP, Scheffers WA (1985) Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J 226:669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from Pichia stipitisXYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization. Appl Microbiol Biotechnol 48:218–224

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Kodaki T, Makino K (2005) Complete reversal coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J Biol Chem 280:10340–10349

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Takeshi Sumiyoshi, JGC corporation, for providing the lignocellulose hydrolysate and Professor Mitsuyoshi Ueda of the Laboratory of Biomacromolecular Chemistry, Department of Applied Biochemistry, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, for his invaluable suggestions. This work was financed by the New Energy and Industrial Technology Development Organization (NEDO), Tokyo, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katahira, S., Mizuike, A., Fukuda, H. et al. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol 72, 1136–1143 (2006). https://doi.org/10.1007/s00253-006-0402-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0402-x

Keywords

Navigation