Skip to main content
Log in

The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics?

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In the recent decade, our view on the organization of the bacterial cell has been revolutionized by the identification of cytoskeletal elements. Most bacterial species have structural homologs of actin and tubulin that assemble into dynamic, filamentous structures at precisely defined sub-cellular locations. The essential cell division protein FtsZ forms a dynamic ring at mid-cell and is similar in its structure to tubulin. Proteins of the MreB family, which are structural homologs of actin, assemble into helical or straight filaments in the bacterial cytoplasm. As in eukaryotic cells, the bacterial cytoskeleton drives essential cellular processes such as cell division, cell wall growth, DNA movement, protein targeting, and alignment of organelles. Different high-throughput assays have been developed to search for inhibitors of components of the bacterial cytoskeleton. Cell-based assays for the detection of cell division inhibitors as well as FtsZ GTPase assays led to the identification of several compounds that inhibit the polymerization of FtsZ, by this blocking bacterial cell division. Such inhibitors might not only be valuable tools for basic research, but might also lead to novel therapeutic agents against pathogenic bacteria. For example, the polyphenol dichamanetin, the 2-alkoxycarbonylaminopyridine SRI-3072, and the benzophenanthridine alkaloid sanguinarine inhibit the GTPase activity of FtsZ and exhibit antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addinall SG, Holland B (2002) The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol 318:219–236

    CAS  PubMed  Google Scholar 

  • Anderson DE, Gueiros-Filho FJ, Erickson HP (2004) Assembly dynamics of FtsZ rings in Bacillus subtilis and Escherichia coli and effects of FtsZ-regulating proteins. J Bacteriol 186:5775–5781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ausmees N, Kuhn JR, Jacobs-Wagner C (2003) The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115:705–713

    CAS  PubMed  Google Scholar 

  • Beck BD, Arscott PG, Jacobson A (1978) Novel properties of bacterial elongation factor Tu. Proc Natl Acad Sci USA 75:1250–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bermudes D, Hinkle G, Margulis L (1994) Do prokaryotes contain microtubules? Microbiol Rev 58:387–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernhardt TG, de Boer PA (2005) SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol Cell 18:555–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beuria TK, Santra MK, Panda D (2005) Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 44:16584–16593

    CAS  PubMed  Google Scholar 

  • Bhavsar AP, Brown ED (2006) Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol Microbiol 60:1077–1090

    CAS  PubMed  Google Scholar 

  • Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164

    CAS  PubMed  Google Scholar 

  • Bork P, Sander C, Valencia A (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proc Natl Acad Sci USA 89:7290–7294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown ED, Wright GD (2005) New targets and screening approaches in antimicrobial drug discovery. Chem Rev 105:759–774

    CAS  PubMed  Google Scholar 

  • Carballido-Lopez R, Errington J (2003) The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 4:19–28

    CAS  PubMed  Google Scholar 

  • Carettoni D, Gomez-Puertas P, Yim L, Mingorance J, Massidda O, Vicente M, Valencia A, Domenici E, Anderluzzi D (2003) Phage-display and correlated mutations identify an essential region of subdomain 1C involved in homodimerization of Escherichia coli FtsA. Proteins 50:192–206

    CAS  PubMed  Google Scholar 

  • Cordell SC, Robinson EJ, Löwe J (2003) Crystal structure of the SOS cell division inhibitor SulA and in complex with FtsZ. Proc Natl Acad Sci USA 100:7889–7894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel RA, Errington J (2003) Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:767–776

    CAS  PubMed  Google Scholar 

  • de Boer PA, Crossley RE, Rothfield LI (1989) A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–649

    PubMed  Google Scholar 

  • Defeu Soufo HJ, Graumann PL (2005) Bacillus subtilis actin-like protein MreB influences the positioning of the replication machinery and requires membrane proteins MreC/D and other actin-like proteins for proper localization. BMC Cell Biol 6:10

    PubMed  PubMed Central  Google Scholar 

  • Del Sol R, Mullins JG, Grantcharova N, Flardh K, Dyson P (2006) Influence of CrgA on assembly of the cell division protein FtsZ during development of Streptomyces coelicolor. J Bacteriol 188:1540–1550

    PubMed  PubMed Central  Google Scholar 

  • Divakaruni AV, Loo RR, Xie Y, Loo JA, Gober JW (2005) The cell-shape protein MreC interacts with extracytoplasmic proteins including cell wall assembly complexes in Caulobacter crescentus. Proc Natl Acad Sci USA 102:18602–18607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dye NA, Pincus Z, Theriot JA, Shapiro L, Gitai Z (2005) Two independent spiral structures control cell shape in Caulobacter. Proc Natl Acad Sci USA 102:18608–18613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erickson HP (2001) Cytoskeleton. Evolution in bacteria. Nature 413:30

    CAS  PubMed  Google Scholar 

  • Errington J (2003) Dynamic proteins and a cytoskeleton in bacteria. Nat Cell Biol 5:175–178

    CAS  PubMed  Google Scholar 

  • Errington J, Daniel RA, Scheffers DJ (2003) Cytokinesis in bacteria. Microbiol Mol Biol Rev 67:52–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Espeli O, Nurse P, Levine C, Lee C, Marians KJ (2003) SetB: an integral membrane protein that affects chromosome segregation in Escherichia coli. Mol Microbiol 50:495–509

    CAS  PubMed  Google Scholar 

  • Esue O, Cordero M, Wirtz D, Tseng Y (2005) The assembly of MreB, a prokaryotic homolog of actin. J Biol Chem 280:2628–2635

    CAS  PubMed  Google Scholar 

  • Esue O, Wirtz D, Tseng Y (2006) GTPase activity, structure, and mechanical properties of filaments assembled from bacterial cytoskeleton protein MreB. J Bacteriol 188:968–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feucht A, Lucet I, Yudkin MD, Errington J (2001) Cytological and biochemical characterization of the FtsA cell division protein of Bacillus subtilis. Mol Microbiol 40:115–125

    CAS  PubMed  Google Scholar 

  • Figge RM, Divakaruni AV, Gober JW (2004) MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332

    CAS  PubMed  Google Scholar 

  • Gerdes K, Moller-Jensen J, Ebersbach G, Kruse T, Nordstrom K (2004) Bacterial mitotic machineries. Cell 116:359–366

    CAS  PubMed  Google Scholar 

  • Gitai Z (2005) The new bacterial cell biology: moving parts and subcellular architecture. Cell 120:577–586

    CAS  PubMed  Google Scholar 

  • Gitai Z, Dye N, Shapiro L (2004) An actin-like gene can determine cell polarity in bacteria. Proc Natl Acad Sci USA 101:8643–8648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–341

    CAS  PubMed  Google Scholar 

  • Graumann PL (2004) Cytoskeletal elements in bacteria. Curr Opin Microbiol 7:565–571

    CAS  PubMed  Google Scholar 

  • Graumann PL, Soufo HJD (2004) An intracellular actin motor in bacteria? BioEssays 26:1209–1216

    CAS  PubMed  Google Scholar 

  • Gueiros-Filho FJ, Losick R (2002) A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16:2544–2556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamoen LW, Meile JC, de Jong W, Noirot P, Errington J (2006) SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59:989–999

    CAS  PubMed  Google Scholar 

  • Haselbeck R, Wall D, Jiang B, Ketela T, Zyskind J, Bussey H, Foulkes JG, Roemer T (2002) Comprehensive essential gene identification as a platform for novel antiinfective drug discovery. Curr Pharm Des 8:1155–1172

    CAS  PubMed  Google Scholar 

  • Higashitani A, Higashitani N, Horiuchi K (1995) A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. Biochem Biophys Res Commun 209:198–204

    CAS  PubMed  Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    PubMed  PubMed Central  Google Scholar 

  • Huang Q, Kirikae F, Kirikae T, Pepe A, Amin A, Respicio L, Slayden RA, Tonge, PJ, Ojima I (2006) Targeting FtsZ for antituberculosis drug discovery: Noncytotoxic taxanes as novel antituberculosis agents. J Med Chem 49:463–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Kawai Y, Hiramatsu K, Kuwano M, Ogasawara N (2006) A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis. Mol Microbiol 60:1364–1380

    CAS  PubMed  Google Scholar 

  • Iwai N, Nagai K, Wachi M (2002) Novel S-bezylsiothiourea compound that induces spherical cells in Escherichia coli probably by acting on a rod-shaped-determining protein(s) other than penicillin-binding protein 2. Biosci Biotechnol Biochem 66:2658–2662

    CAS  PubMed  Google Scholar 

  • Jennings LD, Foreman KW, Rush TS, Tsao DH, Mosyak L, Kincaid SL, Sukhdeo MN, Sutherland AG, Ding W, Kenny CH, Sabus CL, Liu H, Dushin EG, Moghazeh SL, Labthavikul P, Petersen PJ, Tuckman M, Haney SA, Ruzin AV (2004a) Combinatorial synthesis of substituted 3-(2-indolyl)piperidines and 2-phenyl indoles as inhibitors of ZipA–FtsZ interaction. Bioorg Med Chem 12:5115–5131

    CAS  PubMed  Google Scholar 

  • Jennings LD, Foreman KW, Rush TS, Tsao DH, Mosyak L, Li Y, Sukhdeo MN, Ding W, Dushin EG, Kenny CH, Moghazeh SL, Petersen PJ, Ruzin AV, Tuckman M, Sutherland AG (2004b) Design and synthesis of indolo[2,3-a]quinolizin-7-one inhibitors of the ZipA–FtsZ interaction. Bioorg Med Chem Lett 14:1427–1431

    CAS  PubMed  Google Scholar 

  • Kawai Y, Ogasawara N (2006) Bacillus subtilis EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division. Microbiology 152:1129–1141

    CAS  PubMed  Google Scholar 

  • Kawai Y, Moriya S, Ogasawara N (2003) Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47:1113–1122

    CAS  PubMed  Google Scholar 

  • Kenny CH, Ding W, Kelleher K, Benard S, Dushin EG, Sutherland AG, Mosyak L, Kriz R, Ellestad G (2003) Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Anal Biochem 323:224–233

    CAS  PubMed  Google Scholar 

  • Komeili A, Li Z, Newman DK, Jensen GJ (2006) Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–245

    CAS  PubMed  Google Scholar 

  • Kruse T, Bork-Jensen J, Gerdes K (2005) The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex. Mol Microbiol 55:78–89

    CAS  PubMed  Google Scholar 

  • Kruse T, Blagoev B, Lobner-Olesen A, Wachi M, Sasaki K, Iwai N, Mann M, Gerdes K (2006) Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 20:113–124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lappchen T, Hartog AF, Pinas VA, Koomen GJ, den Blaauwen T (2005) GTP analogue inhibits polymerization and GTPase activity of the bacterial protein FtsZ without affecting its eukaryotic homologue tubulin. Biochemistry 44:7879–7884

    PubMed  Google Scholar 

  • Lara B, Rico AI, Petruzzelli S, Santona A, Dumas J, Biton J, Vicente M, Mingorance J, Massidda O (2005) Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Mol Microbiol 55:699–711

    CAS  PubMed  Google Scholar 

  • Leonard TA, Butler PJ, Löwe J (2005) Bacterial chromosome segregation: structure and DNA binding of the Soj dimer—a conserved biological switch. EMBO J 24:270–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levin PA, Kurtser IG, Grossman AD (1999) Identification and characterization of a negative regulator of FtsZ ring formation in Bacillus subtilis. Proc Natl Acad Sci USA 96:9642–9647

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis PJ (2004) Bacterial subcellular architecture: recent advances and future prospects. Mol Microbiol 54:1135–1150

    CAS  PubMed  Google Scholar 

  • Löwe J, Amos LA (1998) Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206

    PubMed  Google Scholar 

  • Löwe J, van den Ent F, Amos LA (2004) Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct 33:177–198

    PubMed  Google Scholar 

  • Lutkenhaus J, Sundaramoorthy M (2003) MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation. Mol Microbiol 48:295–303

    CAS  PubMed  Google Scholar 

  • Margalit DN, Romberg L, Mets RB, Hebert AM, Mitchison TJ, Kirschner MW, RayChaudhuri D (2004) Targeting cell division: small-molecule inhibitors of FtsZ GTPase perturb cytokinetic ring assembly and induce bacterial lethality. Proc Natl Acad Sci USA 101:11821–11826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margolin W (2005) FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol 6:862–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer F (2003) Cytoskeletons in prokaryotes. Cell Biol Int 27:429–438

    CAS  PubMed  Google Scholar 

  • Mazza P, Noens EE, Schirner K, Grantcharova N, Mommaas AM, Koerten HK, Muth G, Flardh K, van Wezel GP, Wohlleben W (2006) MreB of Streptomyces coelicolor is not essential for vegetative growth but is required for the integrity of aerial hyphae and spores. Mol Microbiol 60:838–852

    CAS  PubMed  Google Scholar 

  • Michie KA, Löwe J (2006) Dynamic filaments of the bacterial cytoskeleton. Ann Rev Biochem 75:467–492

    CAS  PubMed  Google Scholar 

  • Moller-Jensen J, Jensen RB, Löwe J, Gerdes K (2002) Prokaryotic DNA segregation by an actin-like filament. EMBO J 21:3119–3127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira IS, Fernandes PA, Ramos MJ (2006) Detailed microscopic study of the full zipA:FtsZ interface. Proteins 63:811–821

    CAS  PubMed  Google Scholar 

  • Mosyak L, Zhang Y, Glasfeld E, Haney S, Stahl M, Seehra J, Somers WS (2000) The bacterial cell-division protein ZipA and its interaction with an FtsZ fragment revealed by X-ray crystallography. EMBO J 19:3179–3191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moy FJ, Glasfeld E, Mosyak L, Powers R (2000) Solution structure of ZipA, a crucial component of Escherichia coli cell division. Biochemistry 39:9146–9156

    CAS  PubMed  Google Scholar 

  • Mukherjee A, Cao C, Lutkenhaus J (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci USA 95:2885–2890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsen T, Yan AW, Gale G, Goldberg MB (2005) Presence of multiple sites containing polar material in spherical Escherichia coli cells that lack MreB. J Bacteriol 187:6187–6196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohashi Y, Chijiiwa Y, Suzuki K, Takahashi K, Nanamiya H, Sato T, Hosoya Y, Ochi K, Kawamura F (1999) The lethal effect of a benzamide derivative, 3-methoxybenzamide, can be suppressed by mutations within a cell division gene, ftsZ, in Bacillus subtilis. J Bacteriol 181:1348–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paradis-Bleau C, Sanschagrin F, Levesque RC (2004) Identification of Pseudomonas aeruginosa FtsZ peptide inhibitors as a tool for development of novel antimicrobials. J Antimicrob Chemother 54:278–280

    CAS  PubMed  Google Scholar 

  • Paradis-Bleau C, Sanschagrin F, Levesque RC (2005) Peptide inhibitors of the essential cell division protein FtsA. Protein Engineering Design and Selection 18:85–91

    CAS  Google Scholar 

  • Peterson JR, Mitchison TJ (2002) Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol 9:1275–1285

    CAS  PubMed  Google Scholar 

  • Pichoff S, Lutkenhaus J (2005) Tethering the Z ring to the membrane through a conserved membrane targeting sequence in FtsA. Mol Microbiol 55:1722–1734

    CAS  PubMed  Google Scholar 

  • Projan SJ (2003) Why is big pharma getting out of antibacterial drug discovery? Curr Opin Microbiol 6:427–430

    PubMed  Google Scholar 

  • Raskin DM, de Boer PA (1999) Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. Proc Natl Acad Sci USA 96:4971–4976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds RC, Srivastava S, Ross LJ, Suling WJ, White EL (2004) A new 2-carbamoyl pteridine that inhibits mycobacterial FtsZ. Bioorg Med Chem Lett 14:3161–3164

    CAS  PubMed  Google Scholar 

  • Rico AI, Garcia-Ovalle M, Mingorance J, Vicente M (2004) Role of two essential domains of Escherichia coli FtsA in localization and progression of the division ring. Mol Microbiol 53:1359–1371

    CAS  PubMed  Google Scholar 

  • Romberg L, Levin PA (2003) Assembly dynamics of the bacterial cell division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 57:125–154

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rush TS, Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48:1489–1495

    CAS  PubMed  Google Scholar 

  • Scheffel A, Gruska M, Faivre D, Linaroudis A, Plitzko JM, Schuler D (2006) An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 440:110–114

    CAS  PubMed  Google Scholar 

  • Schilstra MJ, Slot JW, van der Meide PH, Posthuma G, Cremers AF, Bosch L (1984) Immunocytochemical localization of the elongation factor Tu in E. coli cells. FEBS Lett 165:175–179

    CAS  PubMed  Google Scholar 

  • Shih YL, Le T, Rothfield L (2003) Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci USA 100:7865–7870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih YL, Kawagishi I, Rothfield L (2005) The MreB and Min cytoskeletal-like systems play independent roles in prokaryotic polar differentiation. Mol Microbiol 58:917–928

    CAS  PubMed  Google Scholar 

  • Slovak PM, Porter SL, Armitage JP (2006) Differential localization of Mre proteins with PBP2 in Rhodobacter sphaeroides. J Bacteriol 188:1691–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soufo HJ, Graumann PL (2003) Actin-like proteins MreB and Mbl from Bacillus subtilis are required for bipolar positioning of replication origins. Curr Biol 13:1916–1920

    PubMed  Google Scholar 

  • Stewart GC (2005) Taking shape: control of bacterial cell wall biosynthesis. Mol Microbiol 57:1177–1181

    CAS  PubMed  Google Scholar 

  • Stokes NR, Sievers J, Barker S, Bennett JM, Brown DR, Collins I, Errington VM, Foulger D, Hall M, Halsey R, Johnson H, Rose V, Thomaides HB, Haydon DJ, Czaplewski LG, Errington J (2005) Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J Biol Chem 280:39709–39715

    CAS  PubMed  Google Scholar 

  • Sutherland AG, Alvarez J, Ding W, Foreman KW, Kenny CH, Labthavikul P, Mosyak L, Petersen PJ, Rush TS, Ruzin A, Tsao DH, Wheless KL (2003) Structure-based design of carboxybiphenylindole inhibitors of the ZipA–FtsZ interaction. Organic and Biomolecular Chemistry 1:4138–4140

    CAS  PubMed  Google Scholar 

  • Thanedar S, Margolin W (2004) FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol 14:1167–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trachtenberg S (1998) Mollicutes—wall-less bacteria with internal cytoskeleton. J Struct Biol 124:244–256

    CAS  PubMed  Google Scholar 

  • Urgaonkar S, La Pierre HS, Meir I, Lund H, RayChaudhuri D, Shaw JT (2005) Synthesis of antimicrobial natural products targeting FtsZ: (+/−)-dichamanetin and (+/−)-2′ ″-hydroxy-5′ ′-benzylisouvarinol-B. Org Lett 7:5609–5612

    CAS  PubMed  PubMed Central  Google Scholar 

  • van den Ent F, Löwe J (2000) Crystal structure of the cell division protein FtsA from Thermotoga maritima. Embo J 19:5300–5307

    PubMed  PubMed Central  Google Scholar 

  • van den Ent F, Amos LA, Löwe J (2001) Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44

    PubMed  Google Scholar 

  • Vicente M, Rico AI, Martinez-Arteaga R, Mingorance J (2006) Septum enlightenment: assembly of bacterial division proteins. J Bacteriol 188:19–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vollmer W, Höltje JV (2001) Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633

    CAS  PubMed  Google Scholar 

  • Wang J, Galgoci A, Kodali S, Herath KB, Jayasuriya H, Dorso K, Vicente F, Gonzalez A, Cully D, Bramhill D, Singh S (2003) Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem 278:44424–44428

    CAS  PubMed  Google Scholar 

  • Weart RB, Nakano S, Lane BE, Zuber P, Levin PA (2005) The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol 57:238–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weidel W, Pelzer H (1964) Bagshaped macromolecules—a new outlook on bacterial cell walls. Adv Enzymol 26:193–232

    Google Scholar 

  • Weiss DS (2004) Bacterial cell division and the septal ring. Mol Microbiol 54:588–597

    CAS  PubMed  Google Scholar 

  • White EL, Suling WJ, Ross LJ, Seitz LE, Reynolds RC (2002) 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J Antimicrob Chemother 50:111–114

    CAS  PubMed  Google Scholar 

  • Williamson DL, Renaudin J, Bove JM (1991) Nucleotide sequence of the Spiroplasma citri fibril protein gene. J Bacteriol 173:4353–4362

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolff J, Knuipling L (1993) Antimicrotubule properties of benzophenantridine alkaloids. Biochemistry 32:13334–13339

    CAS  PubMed  Google Scholar 

  • Wu LJ, Errington J (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I thank Petra Born for her critical reading of the manuscript, and the European Commission (LSHM-CT-2004-512138) and the 'Deutsche Forschungsgemeinschaft' (FOR 449) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar Vollmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vollmer, W. The prokaryotic cytoskeleton: a putative target for inhibitors and antibiotics?. Appl Microbiol Biotechnol 73, 37–47 (2006). https://doi.org/10.1007/s00253-006-0586-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0586-0

Keywords

Navigation