Skip to main content
Log in

Factors affecting tyramine production in Enterococcus durans IPLA 655

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The decarboxylation of tyrosine by certain lactic acid bacteria leads to the undesirable presence of tyramine in fermented foods. Tyramine is the most frequent biogenic amine found in cheese and is also commonly found in other fermented foods and beverages. The tyramine-producing strain Enterococcus durans IPLA 655 was grown in a bioreactor under different conditions to determine the influence of carbon source, tyrosine and tyramine concentrations, and pH on tyramine production. The carbon source appeared to have no significant effect on the production of tyramine. In contrast, tyrosine was necessary for tyramine production, while the presence of tyramine itself in the growth medium inhibited such production. pH showed by far the greatest influence on tyramine synthesis; tyramine was produced in the greatest quantities at pH 5.0, although this was accompanied by a reduced growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Bearson S, Bearson B, Foster JW (1997) Acid stress responses in enterobacteria. FEMS Microbiol Lett 147:173–180

    Article  CAS  Google Scholar 

  • Connil N, Plissoneau L, Onno B, Pilet MF, Prevost H, Dousset X (2002) Growth of Carnobacterium divergens V41 and production of biogenic amines and divercin V41 in sterile cold-smoked salmon extract at varying temperatures, NaCl levels, and glucose concentrations. J Food Prot 65:333–338

    Article  CAS  Google Scholar 

  • Coton E, Rollan GC, Lonvaud-Funel A (1998) Histidine decarboxylase of Leuconostoc oenos 9204: purification, kinetic properties, cloning and nucleotide sequence of the hdc gene. J Appl Microbiol 84:143–151

    Article  CAS  Google Scholar 

  • Cuesta P (1996) Desarrollo de un cultivo iniciador para el queso Afuega’l Pitu. Ph.D. thesis, University of Oviedo, Oviedo, Spain

  • Delgado S, Mayo B (2004) Phenotypic and genetic diversity of Lactococcus lactis and Enterococcus spp. strains isolated from Northern Spain starter-free farmhouse cheeses. Int J Food Microbiol 90:309–319

    Article  CAS  Google Scholar 

  • Edwards U, Rogall T, Blocker H, Emde M, Bottger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853

    Article  CAS  Google Scholar 

  • Eitenmiller RR, Koehler PE, Reagan JO (1978) Tyramine in fermented sausages: factors affecting formation of tyrosine and tyrosine decarboxylase. J Food Sci 43:689–693

    Article  CAS  Google Scholar 

  • Fernández M, Linares DM, Alvarez MA (2004) Sequencing of the tyrosine decarboxylase cluster of Lactococcus lactis IPLA 655 and the development of a PCR method for detecting tyrosine decarboxylating lactic acid bacteria. J Food Prot 67:2521–2529

    Article  Google Scholar 

  • Fernández M, Flórez AB, Linares DM, Mayo B, Alvarez MA (2006) Early PCR detection of tyramine-producing bacteria during cheese production. J Dairy Res 73:1–4

    Article  Google Scholar 

  • Foulquie Moreno MR, Sarantinopoulos P, Tsakalidou E, De Vuyst L (2006) The role and application of enterococci in food and health. Int J Food Microbiol 106:1–24

    Article  CAS  Google Scholar 

  • Gale EF (1946) Bacterial amino acid decarboxylases. Adv Enzymol 6:1–32

    CAS  Google Scholar 

  • Gardini F, Martuscelli M, Caruso MC, Galgano F, Crudele MA, Favatti F, Guerzoni ME, Suzzi G (2001) Effects of pH, temperature and NaCl concentration on the growth kinetics, proteolytic activity and biogenic amine production of Enterococcus faecalis. Int J Food Microbiol 64:105–117

    Article  CAS  Google Scholar 

  • Krause I, Bockhardt A, Neckemann H, Henle T, Klostermeyer H (1995) Simultaneous determination of amino acids and biogenic amines by reversed-phase high performance liquid chromatography of the dabsyl derivatives. J Chromatogr A 715:67–79

    Article  CAS  Google Scholar 

  • Landete JM, Ferrer S, Pardo I (2003) Regulación genica y enzimatica de la histidina descarboxilasa (HDC) de Lactobacillus hilgardii Congreso Nacional de Microbiologia (P 42), p 314

  • Le Jeune C, Lonvaud-Funel A, ten Brink B, Hofstra H, van der Vossen JM (1995) Development of a detection system for histidine decarboxylating lactic acid bacteria based on DNA probes, PCR and activity test. J Appl Bacteriol 78:316–326

    Article  Google Scholar 

  • Lin J, Smith MP, Chapin KC, Baik HS, Benett GN, Foster JW (1996) Mechanisms of acid resistance in enterohemorragic Escherichia coli. Appl Environ Microbiol 62:3094–3100

    Article  CAS  Google Scholar 

  • Marcobal A, Martin-Alvarez PJ, Moreno-Arribas MV, Muñoz R (2006) A multifactorial design for studying factors influencing growth and tyramine production of the lactic acid bacteria Lactobacillusbrevis CECT 4669 and Enterococcus faecium BIFI-58. Res Microbiol 157:417–424

    Article  CAS  Google Scholar 

  • Moreno-Arribas V, Lonvaud-Funel A (1999) Tyrosine decarboxylase activity of Lactobacillusbrevis IrOEB 9809 isolated from wine and L. brevis ATCC 367. FEMS Microbiol Lett 180:55–60

    Article  CAS  Google Scholar 

  • Novella-Rodríguez S, Veciana-Nogues MT, Izquierdo-Pulido M, Vidal-Carou MC (2003) Distribution of biogenic amines and polyamines in cheese. J Food Sci 68:750–755

    Article  Google Scholar 

  • Novella-Rodríguez S, Veciana-Nogues MT, Roig-Sagués AX, Trujillo-Mesa AJ, Vidal-Carou MC (2004) Evaluation of biogenic amines and microbial counts throughout the ripening of goat cheeses from pasteurized and raw milk. J Dairy Res 71:245–252

    Article  Google Scholar 

  • Ordoñez AI, Ibáñez FC, Torre P, Barcina Y (1997) Formation of biogenic amines in Idiazábal ewe’s-milk cheese: effect of ripening, pasteurization, and starter. J Food Prot 60:1371–1375

    Article  Google Scholar 

  • O’Sullivan E, Condon S (1999) Relationship between acid tolerance, cytoplasmic pH, and ATP and H+-ATPase levels in chemostat cultures of Lactococcus lactis. Appl Environ Microbiol 65:2287–2293

    Article  Google Scholar 

  • Poolman B, Driessen AJ, Konings WN (1987) Regulation of arginine-ornithine exchange and the arginine deiminase pathway in Streptococcus lactis. J Bacteriol 169:5597–5604

    Article  CAS  Google Scholar 

  • Psoni L, Kotzamanides C, Andrighetto C, Lombardi A, Tzanetakis N, Litopoulou-Tzanetaki E (2006) Genotypic and phenotypic heterogeneity in Enterococcus isolates from Batzos, a raw goat milk cheese. Int J Food Microbiol 119:109–120

    Article  Google Scholar 

  • Rollan GC, Coton E, Lonvaud-Funel A (1995) Histidine decarboxylase activity of Leuconostoc oenos 9204. Food Microbiol 12:455–461

    Article  CAS  Google Scholar 

  • Sanders JW, Leenhouts K, Burghoorn J, Brands JRl, Venema G, Kok J (1998) A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol Microbiol 27:299–310

    Article  CAS  Google Scholar 

  • Santos-Buelga C, Peña-Egido MJ, Rivas-Gonzalo JC (1986) Changes in tyramine during Chorizo–sausages ripening. J Food Sci 51:518–527

    Article  CAS  Google Scholar 

  • Schelp E, Worley S, Monzingo AF, Ernst S, Robertus JD (2001) pH-induced structural changes regulate histidine decarboxylase activity in Lactobacillus 30a. J Mol Biol 306:727–732

    Article  CAS  Google Scholar 

  • Shalaby AR (1996) Significance of biogenic amines to food safety and human health. Food Res Int 29:675–690

    Article  CAS  Google Scholar 

  • Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231

    Article  CAS  Google Scholar 

  • Suzzi G, Gardini F (2003) Biogenic amines in dry fermented sausages: a review. Int J Food Microbiol 88:41–54

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the Commission of the European Communities (QLK1-CT2002-02389). D. M. Linares was the recipient of a fellowship from the Spanish Ministry of Education and Science, and M. Fernández is a beneficiary of a I3P CSIC contract financed by the European Social Fund. We thank Adrian Burton for proofreading the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Alvarez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, M., Linares, D.M., Rodríguez, A. et al. Factors affecting tyramine production in Enterococcus durans IPLA 655. Appl Microbiol Biotechnol 73, 1400–1406 (2007). https://doi.org/10.1007/s00253-006-0596-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0596-y

Keywords

Navigation