Skip to main content
Log in

Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A wide range of diverse polyhydroxyalkanoates, PHAs, is currently available due to the low substrate specificity of PHA synthases and subsequent modifications by chemical reactions. These polymers are promising materials for a number of different applications due to their biocompatibility and biodegradability. This review summarizes the large variability of PHAs regarding chemical structure and material properties that can be currently produced. In the first part, in vivo and in vitro biosynthesis processes for production of a large variety of different PHAs will be summarized with regard to obtaining saturated and unsaturated copolyesters and side chain functionalized polyesters, including brominated, hydroxylated, methyl-branched polyesters, and phenyl derivatives of polyesters. In the second part, established chemical modifications of PHAs will be summarized as that by means of grafting reactions and graft/block copolymerizations, as well as by chlorination, cross-linking, epoxidation, hydroxylation, and carboxylation, reactions yield further functionalized PHAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade AP, Witholt B, Hany R, Egli T, Li Z (2002) Preparation and characterization of enantiomerically pure telechelic diols from mcl-poly[(R)-3-hydroxyalkanoates]. Macromolecules 35:684–689

    CAS  Google Scholar 

  • Arestogui SM, Aponte MA, Diaz E, Schröder E (1999) Bacterial polyesters produced by Pseudomonas oleovorans containing nitrophenyl groups. Macromolecules 32:2889–2895

    Google Scholar 

  • Arkin AH, Hazer B (2002) Chemical modification of chlorinated microbial polyesters. Biomacromolecules 3:1327–1335

    CAS  PubMed  Google Scholar 

  • Arkin AH, Hazer B, Borcakli M (2000) Chlorination of poly-3-hydroxy alkanoates containing unsaturated side chains. Macromolecules 33:3219–3223

    CAS  Google Scholar 

  • Arslan H, Hazer B, Yoon SC (2006) Grafting of poly(3-hydroxyalkanoate) and linoleic acid onto chitosan. J Appl Polym Sci (in press)

  • Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from trigliceride substrates. Appl Microbiol Biotechnol 49:431–437

    CAS  Google Scholar 

  • Ashby RD, Foglia TA, Solaiman DKY, Liu CK, Nunez A, Eggink G (2000) Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing. Int J Biol Macromol 27:355–361

    CAS  PubMed  Google Scholar 

  • Ballistreri A, Montauda G, Impallomeni G, Lenz RW, Ulmer HW, Fuller RC (1995) Synthesis and characterization of polyesters produced by Rhodospirillum rubrum from pentenoic acid. Macromolecules 28:3664–3671

    CAS  Google Scholar 

  • Ballistreri A, Giuffrida M, Guglielmino SPP, Carnazza S, Ferreri A, Impallomeni G (2001) Biosynthesis and structural characterization of medium-chain-length poly(3-hydroxyalkanoates) produced by Pseudomonas aeruginosa from fatty acids. Int J Biol Macromol 29:107–114

    CAS  PubMed  Google Scholar 

  • Bear MM, Leboucher-Durand MA, Langlois V, Lenz RW, Goodwin S, Guerin P (1997) Bacterial poly-3-hydroxyalkenoates with epoxy groups in the side chains. React Funct Polym 34:65–77

    CAS  Google Scholar 

  • Cakmakli B, Hazer B, Borcakli M (2001) Polystyreneperoxide and poly(methyl methacrylate) peroxide for grafting on unsaturated bacterial polyesters. Macromol Biosci 1:348–354

    CAS  Google Scholar 

  • Choi MH, Yoon SC, Lenz RW (1999) Production of poly(3-hydroxybutyric acid-co-4-hydroxybutyric acid) and poly(4-hydroxybutyric acid) without subsequent degradation by Hydrogenophage pseudoflava. Appl Environ Microbiol 65:1570–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chung CW, Kim HW, Kim YB, Rhee YH (2003) Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) networks for enhanced blood compatibility. Int J Biol Macromol 32:17–22

    CAS  PubMed  Google Scholar 

  • Constantin M, Simionescu CI, Carpov A, Samain E, Driguez H (1999) Chemical modification of poly(hydroxyalkanoates) copolymers bearing pendant sugars. Macromol Rapid Commun 20:91–94

    CAS  Google Scholar 

  • Curley JM, Hazer B, Lenz RW, Fuller RC (1996) Production of poly(3-hydroxyalkanoates) containing aromatic substituents by Pseudomonas oleovorans. Macromolecules 29:1762–1766

    CAS  Google Scholar 

  • Deng XM, Hao JY (2001) Synthesis and characterization of poly(3-hydroxybutyrate) macromer of bacterial origin. Eur Polym J 37:211–214

    CAS  Google Scholar 

  • D’Haene P, Remsen EE, Asrar J (1999) Preparation and characterization of a branched bacterial polyester. Macromolecules 32:5229–5235

    Google Scholar 

  • Doi Y (1990) Microbial polyesters. VCH, New York

    Google Scholar 

  • Doi Y, Segawa A, Kunioka M (1990) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Alcaligenes eutrophus. Int J Biol Macromol 12:106–111

    CAS  PubMed  Google Scholar 

  • Doi Y, Kitamura S, Abe H (1995) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules 28:4822–4828

    CAS  Google Scholar 

  • Dufresne A, Reche L, Marchessault RH, Lacroix M (2001) Gamma-ray crosslinking of poly(hydroxyoctanoate-co-undecenoate). Int J Biol Macromol 29:73–82

    CAS  PubMed  Google Scholar 

  • Eggink G, van der Wal H, Huijberts GNM, de Waard P (1993) Oleic acid as substrate for poly-3-hydroxyalkanoate formation in Alcaligenes eutrophus and Pseudomonas putida. Ind Crops Prod 1:157–163

    Google Scholar 

  • Eroğlu MS, Çaykara T, Hazer B (1998) Gamma rays induced grafting of methyl methacrylate onto poly(β-hydroxynonanoate). Polym Bull 41:53–60

    Google Scholar 

  • Eroğlu MS, Hazer B, Ozturk T, Caykara T (2005) Hydroxylation of pendant vinyl groups of poly(3-hydroxy undec-10-enoate) in high yield. J Appl Polym Sci 97:2132–2139

    Google Scholar 

  • Feng L, Yoshie N, Asakawa N, Inoue Y (2004) Comonomer-unit compositions, physical properties and biodegradability of bacterial copolyhydroxyalkanoates. Macromol Biosci 4:186–198

    CAS  PubMed  Google Scholar 

  • Förster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10:195–217

    Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990a) An unusual bacterial polyester with a phenyl pendant group. Makromol Chem 191:1957–1965

    CAS  Google Scholar 

  • Fritzsche K, Lenz RW, Fuller RC (1990b) Bacterial polyesters containing branched poly(β-hydroxyalkanoate) units. Int J Biol Macromol 12:92–101

    CAS  PubMed  Google Scholar 

  • Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutropha for production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state propserties of the copolymer. Biomacromolecules 3:618–624

    CAS  PubMed  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994a) Chemical modification of bacterial elastomers: 1. Peroxide crosslinking. Polymer 35:4358–4367

    CAS  Google Scholar 

  • Gagnon KD, Lenz RW, Farris RJ, Fuller RC (1994b) Chemical modification of bacterial elastomers: 2. Sulfur vulcanization. Polymer 35:4368–4375

    CAS  Google Scholar 

  • Gerngross TU, Martin DP (1995) Enzyme-catalyzed synthesis of poly[(R)-(−)-3-hydroxybutyrate]: formation of macroscopic granules in vitro. Proc Natl Acad Sci USA 92:6279–6283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grassie N, Murray EJ, Holmes PA (1984) The thermal degradation of poly(-(d)-β-hydroxybutyric acid): part 3—the reaction mechanism. Polym Degrad Stab 6:127–134

    CAS  Google Scholar 

  • Grondahl L, Chandler-Temple A, Trau M (2005) Polymeric grafting of acrylic acid onto poly(3-hydroxybutyrate-co-valerate): surface functionalization for tissue engineering applications. Biomacromolecules 6:2197–2203

    CAS  PubMed  Google Scholar 

  • Gross RA, DeMello C, Lenz RW, Brandle H, Fuller RC (1989) Biosynthesis and characterization of poly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules 22:1106–1115

    CAS  Google Scholar 

  • Hany R, Böhlen C, Geiger T, Hartmann R, Kawada J, Schimid M, Zinn M, Marchessault RH (2004) Chemical synthesis of crystalline comb polymers from olefinic medium-chain-length poly(3-hydroxyalkanoates). Macromolecules 37:385–389

    CAS  Google Scholar 

  • Hao J, Deng X (2001) Semi-interpenetrating networks of bacterial poly(3-hydroxybutyrate) with net-poly(ethylene glycol). Polymer 42:4091–4097

    CAS  Google Scholar 

  • Hartmann R, Hany R, Geiger T, Egli T, Witholt B, Zinn M (2004) Tailored biosynthesis of olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] in Pseudomonas putida Gpo1 with improved thermal properties. Macromolecules 37:6780–6785

    CAS  Google Scholar 

  • Hartmann R, Hany R, Pletscher E, Ritter A, Witholt B, Zinn M (2006) Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] by Pseudomonas putida Gpo1: batch versus chemostat production. Biotechnol Bioeng 93:737–746

    CAS  PubMed  Google Scholar 

  • Hazer B (1985) Multiblock copolymers by polymeric initiators via free radical mechanism. Angew Makromol Chem 129:31–41

    CAS  Google Scholar 

  • Hazer B (1987) Polymerization of vinyl monomers by a new oligoperoxide. Oligo (adipoyl 5-peroxy 2,5-dimethyl n hexyl) peroxide). J Polym Sci Polym Chem Ed 25:3349–3354

    CAS  Google Scholar 

  • Hazer B (1989) Synthesis and characterization of block copolymers. In: Cheremisinoff NP (ed) Handbook of polymer science and engineering, vol 1. Marcel Dekker, New York, pp 133–176

    Google Scholar 

  • Hazer B (1991) Synthesis of PS-PEG and PMMA-PEG branched block copolymers by macroinimers. J Macromol Sci Pure Appl Chem A28:47–52

    CAS  Google Scholar 

  • Hazer B (1994) Preparation of polystyrene-poly(β-hydroxynonanoate) graft copolymers. Polym Bull 33:431–438

    CAS  Google Scholar 

  • Hazer B (1995) Grafting reactions onto polymer backbone with polymeric initiator. J Macromol Sci Pure Appl Chem A32(5, 6):679–685

    CAS  Google Scholar 

  • Hazer B (1996a) Macromonomeric initiators. In: Salamone JC (ed) Polymeric materials encyclopedia, vol 6. CRC Press, Boca Raton, pp 3911–3918

    Google Scholar 

  • Hazer B (1996b) Poly(β-hydroxynonanoate) and polystyrene or poly(methylmethacrylate) graft copolymers : microstructure characteristics and mechanical and thermal behavior. Macromol Chem Phys 197:431–441

    CAS  Google Scholar 

  • Hazer B (1997) Macrointermediates for block and graft copolymers. In: Cheremisinoff NP (ed) Handbook of engineering polymeric materials. Marcel Dekker, New York, pp 725–734

    Google Scholar 

  • Hazer B (2002) Chemical modification of bacterial polyester. Curr Trends Polym Sci 7:131–138

    CAS  Google Scholar 

  • Hazer B (2003) Chemical modification of synthetic and biosynthetic polyesters. In: Steinbüchel A (ed) Biopolymers, vol 10. Wiley–VCH, Weinheim, pp 181–208

    Google Scholar 

  • Hazer B, Baysal BM (1986) Preparation of block copolymers using a new polymeric peroxycarbamate. Polymer 27:961–986

    CAS  Google Scholar 

  • Hazer B, Kurt A (1995) Polymerization kinetics of styrene by oligododecandioylperoxide, ODDP, and synthesis of poly(styrene-g-butadiene) graft copolymers. Eur Polym J 31:449–503

    Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1994a) Biosynthesis of methyl branched poly(β-hydroxy alkanoate)s with Pseudomonas oleovorans. Macromolecules 27:45–49

    CAS  Google Scholar 

  • Hazer B, Erdem B, Lenz RW (1994b) Styrene polymerization with some new macro or macromer initiators having PEG units. J Polym Sci A Polym Chem 32:1739–1746

    CAS  Google Scholar 

  • Hazer B, Lenz RW, Fuller RC (1996) Production of some new biopolyesters containing aromatic substituents by either Pseudomonas oleovorans or Pseudomonas putida. Polymer 37:5951–5957

    CAS  Google Scholar 

  • Hazer B, Torul O, Borcakli M, Lenz RW, Fuller RC, Goodwin SD (1998) Bacterial production of polyesters from free fatty acids obtained from natural oils by Pseudomonas oleovorans. J Environ Polym Degrad 6:109–113

    CAS  Google Scholar 

  • Hazer B, Lenz RW, Çakmaklı B, Borcaklı M, Koçer H (1999) Preparation of poly(ethylene glycol) grafted poly(3-hydroxyalkanoate)s. Macromol Chem Phys 200:1903–1907

    CAS  Google Scholar 

  • Hazer B, Demirel SI, Borcakli M, Eroğlu MS, Cakmak M, Erman B (2001) Free radical crosslinking of unsaturated bacterial polyester obtained from soybean oily acids. Polym Bull 46:389–394

    CAS  Google Scholar 

  • Hirt TD, Neuenschwander P, Suter UW (1996) Telechelic diols from poly[(R)-3-hydroxy-butyric acid] and poly[(R)-3-hydroxybutyric acid-co-[(R)-3-hydroxyvaleric acid]. Macromol Chem Phys 197:1609–1614

    CAS  Google Scholar 

  • Hrabak O (1992) Industrial production of poly-β-hydroxybutyrate. FEMS Microbiol Rev 103:251–256

    CAS  Google Scholar 

  • İbaoğlu K, Hazer B, Arkin AH, Lenz RW (2000) Production of poly-3-hydroxyalkanoates from methyl branched alkanoic acids by Pseudomonas oleovorans. Bulletin of the Chemists and Technologists of Macedonia 19:41–48

    Google Scholar 

  • Ilter S, Hazer B, Borcakli M, Atici M (2001) Graft copolymerization of methyl methacrylate onto bacterial polyester containing unsaturated side chains. Macromol Chem Phys 202:2281–2286

    CAS  Google Scholar 

  • Imamura T, Kenmoku T, Honma T, Kobayashi S, Yano T (2001) Direct biosynthesis of poly(3-hydroxyalkanoates) bearing epoxide groups. Int J Biol Macromol 29:95–301

    Google Scholar 

  • Jiang T, Hu P (2001) Radiation-induced graft polymerization of isoprene onto polyhydroxybutyrate. Polym J 33:647–653

    CAS  Google Scholar 

  • Jossek R, Reichelt R, Steinbüchel A (1998) In vitro biosynthesis of poly(3-hydroxybutyric acid) by using purified poly(hydroxyalkanoic acid) synthase of Chromatium vinosum. Appl Microbiol Biotechnol 49:258–266

    CAS  PubMed  Google Scholar 

  • Kamachi M, Zhang S, Goodwin S, Lenz RW (2001) Enzymatic polymerization and characterization of new poly(3-hydroxyalkanoate)s by a bacterial polymerase. Macromolecules 34:6889–6894

    CAS  Google Scholar 

  • Kawada J, Lütke-Eversloh T, Steinbüchel A, Marchessault RH (2003) Physical properties of microbial polythioesters: characterization of poly(3-mercaptoalkanoates) synthesized by engineered Escherichia coli. Biomacromolecules 4:1698–1702

    CAS  PubMed  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1992) Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans. Macromolecules 25:1852–1857

    CAS  Google Scholar 

  • Kim YB, Lenz RW, Fuller RC (1995) Poly-3-hydroxyalkanoates containing unsaturated repeating units produced by Pseudomonas oleovorans. J Polym Sci A Polym Chem 33:1367–1374

    CAS  Google Scholar 

  • Kim YB, Rhee YH, Han SH, Heo GS, Kim JS (1996) Poly-3-hydroxyalkanoates produced from Pseudomonas oleovorans grown with ω-phenoxyalkanoates. Macromolecules 29:3432–3435

    CAS  Google Scholar 

  • Kim YB, Kim DY, Rhee YH (1999) PHAs produced by Pseudomonas putida and Pseudomonas oleovorans grown with n-alkanoic acids containing aromatic groups. Macromolecules 32:6058–6064

    CAS  Google Scholar 

  • Kim DY, Kim YB, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28:23–29

    CAS  PubMed  Google Scholar 

  • Kim HW, Chung CW, Kim SS, Kim YB, Rhee YH (2002) Preparation and cell compatibility of acrylamid-grafted poly(3-hydroxyoctanoate). Int J Biol Macromol 30:129–135

    CAS  PubMed  Google Scholar 

  • Kim HW, Chung CW, Rhee YH (2005) UV-induced graft copolymerization of monoacrylate-poly(ethylene glycol) onto poly(3-hydroxyoctanoate) to reduce protein adsorption and platelet adhesion. Int J Biol Macromol 35:47–53

    CAS  PubMed  Google Scholar 

  • Koçer H, Borcaklı M, Demirel S, Hazer B (2003) Production of bacterial polyesters from some various new substrates by Alcaligenes eutrophus and Pseudomonas oleovorans. Turk J Chem 27:365–373

    Google Scholar 

  • Konig GJM, van Bilsen HMM, Lemstra PJ, Hazenberg W, Witholt B, Preusting H, van der Galien JG, Schirmer A, Jendrossek D (1994) A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans. Polymer 35:2090–2097

    Google Scholar 

  • Kukula H, Schlaad H, Antonietti M, Förster S (2002) The formation of polymer vesicles or “peptosomes” by polybutadiene-block-poly(l-glutamate)s in dilute aqueous solution. J Am Chem Soc 124:1658–1663

    CAS  PubMed  Google Scholar 

  • Kurth N, Renard E, Brachet F, Robic D, Guerin Ph, Bourbouze R (2002) Poly(3-hydroxyoctanoate) containing pendant carboxylic groups for the preparation of nanoparticles aimed at drug transport and release. Polymer 43:1095–1101

    CAS  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laverty LJ, Gardlund ZG (1977) Poly(vinyl chloride)-poly(ethylene oxide) block copolymers: synthesis and characterization. J Polym Sci A Polym Chem 15:2001–2011

    CAS  Google Scholar 

  • Lee MY, Park WH (2000) Preparation of bacterial copolyesters. Macromol Chem Phys 201:2771–2774

    CAS  Google Scholar 

  • Lee SH, Oh DH, Ahn WS, Lee Y, Choi J, Lee SY (2000a) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244

    CAS  PubMed  Google Scholar 

  • Lee MY, Park WH, Lenz RW (2000b) Hydrophilic bacterial polyesters modified with pendant hydroxyl groups. Polymer 41:1703–1709

    CAS  Google Scholar 

  • Lenz RW (1993) Biodegradable polymers. Adv Polym Sci 107:1–40

    CAS  Google Scholar 

  • Lenz RW, Marchessault RH (2005) Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6:1–8

    CAS  PubMed  Google Scholar 

  • Li J, Li X, Ni X, Leong KW (2003) Synthesis and characterization of new biodegradable amphiphilic poly(ethylene oxide)-b-poly[(R)-3-hydroxy butyrate]-b-poly(ethylene oxide) triblock copolymers. Macromolecules 36:2661–2667

    CAS  Google Scholar 

  • Li J, Ni X, Li X, Tan NK, Lim CT, Ramakrishna S, Leong KW (2005a) Micellization phenomena of biodegradable amphiphilic triblock copolymers consisting of poly(β-hydroxyalkanoic acid) and poly(ethylene oxide). Langmuir 21:8681–8685

    CAS  PubMed  Google Scholar 

  • Li X, Loh XJ, Wang K, He C, Li J (2005b) Poly(ester urethane)s consisting of poly[(R)-3-hydroxy butyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Biomacromolecules 6:2740–2747

    CAS  PubMed  Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A (2001a) Biosynthesis of a new class of biopolymer: bacterial synthesis of a sulfur containing polymer with thioester linkages. Microbiology 147:11–19

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Bergander K, Luftman H, Steinbüchel A (2001b) Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analog to poly(3-hydroxybutyrate). Biomacromolecules 2:1061–1065

    PubMed  Google Scholar 

  • Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bögershausen A, Kalwei M, Eckert H, Reichelt R, Liu SJ, Steinbüchel A (2002) Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nature Mater 1:236–240

    Google Scholar 

  • Nguyen S, Marchessault RH (2004) Synthesis and properties of graft copolymers based on poly(3-hydroxybutyrate) macromonomers. Macromol Biosci 4:262–268

    CAS  PubMed  Google Scholar 

  • Nuyken O, Weidner R (1986) Graft and block copolymers via polymeric azo initiators. Adv Polym Sci 145:73–74

    Google Scholar 

  • Park WH, Lenz RW, Goodwin S (1998a) Epoxidation of bacterial polyesters with unsaturated side chains. I. Production and epoxidation of polyesters from 10-undecenoic acid. Macromolecules 31:1480–1486

    CAS  Google Scholar 

  • Pederson EN, McChalicher CWJ, Srienc F (2006) Bacterial synthesis of PHA block copolymers. Biomacromolecules 7:1904–1911

    CAS  PubMed  Google Scholar 

  • Park WH, Lenz RW, Goodwin S (1998b) Epoxidation of bacterial polyesters with unsaturated side chains. III. Crosslinking of epoxidized polymers. J Polym Sci A Polym Chem 36:2389–2396

    CAS  Google Scholar 

  • Qiu YZ, Ouyang SP, Shen Z, Wu Q, Chen GQ (2004) Metabolic engineering for the production of copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyhexanoate by Aeromonas hydrophila. Macromol Biosci 4:255–261

    CAS  PubMed  Google Scholar 

  • Qiu YZ, Han J, Guo JJ, Chen GQ (2005) Production of poly(3-hydroxybutyrate and 3-hydroxyhexanoate) by Aeromonas hydrophila and Pseudomonas putida. Biotechnol Lett 27:1381–1386

    CAS  PubMed  Google Scholar 

  • Ramsay BA, Lomaliza K, Chavarie C, Dube B, Bataille B, Ramsay JA (1990) Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ravenelle F, Marchessault R (2003) Self assembly of poly[(R)-3-hydroxybutyric acid)-block-Poly(ethylene glycol) diblock copolymers. Biomacromolecules 4:856–858

    CAS  PubMed  Google Scholar 

  • Ritter H, von Spee AG (1994) Bacterial production of polyesters bearing phenoxy groups in the side chains, 1 poly(3-hydroxy-5-phenoxypentanoate-co-3-hydroxy-9-phenoxy-nonanoate) from Pseudomonas oleovorans. Macromol Chem Phys 195:1665–1672

    CAS  Google Scholar 

  • Saad GR (2001) Calorimetric and dielectric study of the segmented biodegradable poly(ester-urethane)s based on bacterial poly[(R)-3-hydroxy butyrate]. Macromol Biosci 1:387–396

    CAS  Google Scholar 

  • Schmack G, Gorenflo V, Steinbüchel A (1998) Biotechnological production and characterization of polyesters containing 4-hydroxyvaleric acid and medium-chain-length hydroxyalkanoic acids. Macromolecules 31:644–649

    CAS  Google Scholar 

  • Shah DT, Tran M, Berger PA, Aggarwal P, Asrar J, Madden LA, Anderson AJ (2000) Synthesis and properties of hydroxy-terminated poly(hydroxyalkanoate)s. Macromolecules 33:2875–2880

    CAS  Google Scholar 

  • Steinbüchel A (1991) Polyhydroxyalkanoic acids. In: Byrom D (ed) Biomaterials. Macmillan, New York, pp 123–213

    Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24

    Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. TIBTECH 16:419–427

    Google Scholar 

  • Steinbüchel A, Valentin HE (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 128:219–228

    Google Scholar 

  • Stigers DJ, Tew GN (2003) Poly(3-hydroxyalkanoate)s functionalized with carboxylic acid groups in the side chain. Biomacromolecules 4:193–195

    CAS  PubMed  Google Scholar 

  • Sudesh K, Doi Y (2005) Polyhydroxyalkanoates. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology, UK, pp 219–256

    Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Progr Polym Sci 25:1503–1555

    CAS  Google Scholar 

  • Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Fujisawa T, Doi Y, Iwata T (2006) Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-3-hydroxyvalerate] high-strength fibers. Macromolecules 39:2940–2946

    CAS  Google Scholar 

  • Timbart L, Renard E, Langlois V, Guerin P (2004) Novel biodegradable copolyesters containing blocks of poly(3-hydroxyoctanoate) and poly(ɛ-caprolactone): synthesis and characterization. Macromol Biosci 4:1014–1020

    CAS  PubMed  Google Scholar 

  • Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3-hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge T, Saito Y, Kikkawa Y, Hiraishi T, Doi Y (2004) Biosynthesis and compositional regulation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in recombinant Ralstonia eutropha expressing mutated polyhydroxyalkanoate synthase genes. Macromol Biosci 4:238–242

    CAS  PubMed  Google Scholar 

  • Ulmer HW, Gross RA, Posada M, Weisbach P, Fuller RC, Lenz RW (1994) Bacterial production of poly(β-hydroxyalkanoates) containing repeating units by Rhodospirillum rubrum. Macromolecules 27:1675–1679

    CAS  Google Scholar 

  • van der Walle GAM, Buisman GJH, Weusthuis RA, Eggink G (1999) Development of environmentally friendly coatings and paints using medium-chain-length poly(3-hydroxy-alkanoates) as the polymer binder. Int J Biol Macromol 25:123–128

    PubMed  Google Scholar 

  • Valentin HE, Lee EY, Choi CY, Steinbüchel A (1994) Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 40:710–716

    CAS  Google Scholar 

  • Valentin HE, Berger PA, Gruys KJ, Rodrigues MFA, Steinbüchel A, Tran M, Asrar J (1999) Biosynthesis and characterization of poly(3-hydroxy-4-pentenoic acid). Macromolecules 32:7389–7395

    CAS  Google Scholar 

  • Yalpani M, Marchessault RH, Morin FG, Monasterios CJ (1991) Synthesis of poly(3-hydroxyalkanoate) (PHA) conjugates: PHA-carbohydrate and PHA-synthetic polymer conjugates. Macromolecules 24:6046–6049

    CAS  Google Scholar 

  • Walz R, Bömer B, Heitz W (1977) Preparation and characterization of a branched bacterial polyester. Makromol Chem 178:2527–2534

    CAS  Google Scholar 

  • Zagar E, Krzan A, Adamus G, Kowalczuk M (2006) Sequence distribution in microbial poly(3-hydroxybutyrate and 3-hydroxyvalerate) co-polyesters determined by NMR and MS. Biomacromolecules 7:2210–2216

    CAS  PubMed  Google Scholar 

  • Zhang S, Kolvek S, Goodwin S, Lenz RW (2004) Poly(hydroxyalkanoic acid) biosynthesis in Ectothiorhodospira shaposhnikovii: characterization and reactivity of a type III PHA synthase. Biomacromolecules 5:40–48

    PubMed  Google Scholar 

  • Zhu KJ, Bihai S, Shilin Y (1989) Super microcapsules (SMC). I. Preparation and characterization of star polymethylene oxide (PEO)-polylactide (PLA) copolymers. J Polym Sci A Polym Chem 27:2151–2159

    CAS  Google Scholar 

Download references

Acknowledgment

This work was financially supported by TUBITAK (Turkey) grant no. 104M128. Studies of A.S. were supported by the grant provided by the Deutsche Forschungsgemeinschaft in the past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baki Hazer.

Glossary of PHAs

mclPHA

medium chain length poly(3-hydroxyalkanoic acid)

PHA

polyhydroxyalkanoates

PHB

poly(3-hydroxybutyrate)

PHBV

poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

PHBHp

poly(3-hydroxybutyrate-co-3-hydroxyheptanoate

PHBHx

poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)

PHD

poly(3-hydroxydecanoate)

PHN

poly(3-hydroxynonanoate)

PHO

poly(3-hydroxyoctanoate)

PHOU

poly(3-hydroxy octanoate-co-3-hydroxy undecenoate)

PHPE

poly(3-hydroxy-4-pentenoic acid)

PHU

poly(3-hydroxy-10-undecenoate)

PHV

poly(3-hydroxyvalerate)

PH5PoxV

poly(3-hydroxy-5-phenoxy valerate)

PH6PHx

poly(3-hydroxy-6-phenyl hexanoate)

PH8-pMPoxO

poly(3-hydroxy-p-methylphenoxy octanoate)

PH-p-nitroPV

poly(3-hydroxy-p-nitrophenyl valerate)

PH-p5TV

poly(3-hydroxy-p-tolyl valerate)

P(H6MN)

poly(3-hydroxy-6-methylnonanoate)

sclPHA

short chain length poly(3-hydroxyalkanoic acid)

3MB

3-mercaptobutyrate

3MP

3-mercaptopropionate

3MV

3-mercaptovalerate

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazer, B., Steinbüchel, A. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl Microbiol Biotechnol 74, 1–12 (2007). https://doi.org/10.1007/s00253-006-0732-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0732-8

Keywords

Navigation