Skip to main content
Log in

Thymidyl biosynthesis enzymes as antibiotic targets

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The two long-known “classical” enzymes of uridyl-5-methylation, thymidylate synthase and ribothymidyl synthase, have been joined by two alternative methylation enzymes, flavin-dependent thymidylate synthase and folate-dependent ribothymidyl synthase. These two newly discovered enzymes have much in common: both contain flavin cofactors, utilize methylenetetrahydrofolate as a source of methyl group, and perform thymidylate synthesis via chemical pathways distinct from those of their classic counterparts. Several severe human pathogens (e.g., typhus, anthrax, tuberculosis, and more) depend on these “alternative” enzymes for reproduction. These and other distinctive properties make the alternative enzymes and their corresponding genes appealing targets for new antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Scheme 3

Similar content being viewed by others

References

  • Agrawal N, Lesley SA, Kuhn P, Kohen A (2004) Mechanistic studies of a flavin-dependent thymidylate synthase. Biochemistry 43:10295–10301

    CAS  PubMed  Google Scholar 

  • Atreya CE, Anderson KS (2004) Kinetic characterization of bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis: a paradigm shift for ts activity and channeling behavior. J Biol Chem 279:18314–18322

    CAS  PubMed  Google Scholar 

  • Atreya CE, Johnson EF, Irwin JJ, Dow A, Massimine KM, Coppens I, Stempliuk V, Beverley S, Joiner KA, Shoichet BK, Anderson KS (2003) A molecular docking strategy identifies Eosin B as a non-active site inhibitor of protozoal bifunctional thymidylate synthase-dihydrofolate reductase. J Biol Chem 278:14092–14100

    CAS  PubMed  Google Scholar 

  • Barrett JE, Maltby DA, Santi DV, Schultz PG (1998) Trapping of the C5 methylene intermediate in thymidylate synthase. J Am Chem Soc 120:449–450

    CAS  Google Scholar 

  • Carreras CW, Santi DV (1995) The catalytic mechanism and structure of thymidylate synthase. Annu Rev Biochem 64:721–762

    CAS  PubMed  Google Scholar 

  • Chu E, Voeller D, Koeller DM, Drake JC, Takimoto CH, Maley GF, Maley F, Allegra CJ (1993) Identification of an RNA binding site for human thymidylate synthase. Proc Natl Acad Sci USA 90:517–521

    CAS  PubMed  Google Scholar 

  • Danenberg PV, Malli H, Swenson S (1999) Thymidylate synthase inhibitors. Semin Oncol 26:621–631

    CAS  PubMed  Google Scholar 

  • Delk AS, Rabinowitz JC (1975) Biosynthesis of ribosylthymine in the transfer RNA of Streptococcus faecalis: a folate-dependent methylation not involving S-adenosylmethionine. Proc Natl Acad Sci USA 72:528–530

    CAS  PubMed  Google Scholar 

  • Delk AS, Romeo JM, Nagle DP Jr, Rabinowitz JC (1976) Biosynthesis of ribothymidine in the transfer RNA of Streptococcus faecalis and Bacillus subtilis. A methylation of RNA involving 5,10-methylenetetrahydrofolate. J Biol Chem 251:7649–7656

    CAS  PubMed  Google Scholar 

  • Delk AS, Nagle DP Jr, Rabinowitz JC, Straub KM (1979) The methylenetetrahydrofolate-mediated biosynthesis of ribothymidine in the transfer-RNA of Streptococcus faecalis: incorporation of hydrogen from solvent into the methyl moiety. Biochem Biophys Res Commun 86:244–251

    CAS  PubMed  Google Scholar 

  • Delk AS, Nagle DP Jr, Rabinowitz JC (1980) Methylenetetrahydrofolate-dependent biosynthesis of ribothymidine in transfer RNA of Streptococcus faecalis. Evidence for reduction of the 1-carbon unit by FADH2. J Biol Chem 255:4387–4390

    CAS  PubMed  Google Scholar 

  • Gattis SG, Palfey BA (2005) Direct observation of the participation of flavin in product formation by thyX-encoded thymidylate synthase. J Am Chem Soc 127:832–833

    CAS  PubMed  Google Scholar 

  • Graziani S et al. (2004) Functional analysis of FAD-dependent thymidylate synthase ThyX from paramecium bursaria chlorella virus-1. J Biol Chem 279:54340–54347

    CAS  PubMed  Google Scholar 

  • Graziani S, Bernauer J, Skouloubris S, Graille M, Zhou CZ, Marchand C, Decottignies P, van Tilbeurgh H, Myllykallio H, Liebl U (2006) Catalytic mechanism and structure of viral flavin-dependent thymidylate synthase ThyX. J Biol Chem 281(33):24048–24057

    CAS  PubMed  Google Scholar 

  • Griffin J, Roshick C, Iliffe-Lee E, McClarty G (2005) Catalytic mechanism of Chlamydia trachomatis flavin-dependent thymidylate synthase. J Biol Chem 280:5456–5467

    CAS  PubMed  Google Scholar 

  • Ivanetich KM, Santi DV (1990) Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. Faseb J 4:1591–1597

    CAS  PubMed  Google Scholar 

  • Johnson EF, Hinz W, Atreya CE, Maley F, Anderson KS (2002) Mechanistic characterization of Toxoplasma gondii thymidylate synthase (TS-DHFR)-dihydrofolate reductase. Evidence for a TS intermediate and TS half-sites reactivity. J Biol Chem 277:43126–43136

    CAS  PubMed  Google Scholar 

  • Kanai F, Sawa T, Hamada M, Naganawa H, Takeuchi T, Umezawa H (1983) Vanoxonin, a new inhibitor of thymidylate synthetase. J Antibiot (Tokyo) 36:656–660

    CAS  Google Scholar 

  • Kanai F, Isshiki K, Umezawa Y, Morishima H, Naganawa H, Takita T, Takeuchi T, Umezawa H (1985a) Vanoxonin, a new inhibitor of thymidylate synthetase. II. Structure determination and total synthesis. J Antibiot (Tokyo) 38:31–38

    CAS  Google Scholar 

  • Kanai F, Kaneko T, Morishima H, Isshiki K, Takita T, Takeuchi T, Umezawa H (1985b) Vanoxonin, a new inhibitor of thymidylate synthetase. III. Inhibition of thymidylate synthetase by vanoxonin-vanadium complex. J Antibiot (Tokyo) 38:39–50

    CAS  Google Scholar 

  • Kanai A, Sato A, Imoto J, Tomita M (2006) Archaeal Pyrococcus furiosus thymidylate synthase 1 is an RNA-binding protein. Biochem J 393:373–379

    CAS  PubMed  Google Scholar 

  • Kealey JT, Santi DV (1995) Stereochemistry of tRNA(m5U54)-methyltransferase catalysis: 19F NMR spectroscopy of an enzyme-FUraRNA covalent complex. Biochemistry 34:2441–2446

    CAS  PubMed  Google Scholar 

  • Kealey JT, Gu X, Santi DV (1994) Enzymatic mechanism of tRNA (m5U54)methyltransferase. Biochimie 76:1133–1142

    CAS  PubMed  Google Scholar 

  • Kuhn P, Lesley SA, Mathews II, Canaves JM, Brinen LS, Dai X, Deacon AM, Elsliger MA, Eshaghi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Guda C, Hodgson KO, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JM, Kreusch AT, McMullan D, McPhillips TM, Miller MA, Miller M, Morse A, Mon K, Ouyang J, Robb A, Rodrigues K, Selby TL, Spraggon G, Stevens RC, Taylor SS, Van den Bedem H, Velasquez J, Vincent J, Wang X, West B, Wolf G, Wooley J, Wilson IA (2002) Crystal structure of thy1, a thymidylate synthase complementing protein from thermotoga maritima at 2.25 Å resolution. Protein Struc Funct Genet 49:142–145

    CAS  Google Scholar 

  • Leduc D, Graziani S, Lipowski G, Marchand C, Le Maréchal P, Liebl U, Myllykallio H (2004a) Functional evidence for active site location of tetrameric thymidylate synthase X at the interphase of three monomers. Proc Natl Acad Sci USA 101:7252–7257

    CAS  PubMed  Google Scholar 

  • Leduc D, Graziani S, Meslet-Cladiere L, Sodolescu A, Liebl U, Myllykallio H (2004b) Two distinct pathways for thymidylate (dTMP) synthesis in (hyper)thermophilic Bacteria and Archaea. Biochem Soc Trans 32:231–235

    CAS  PubMed  Google Scholar 

  • Lee TT, Agarwalla S, Stroud RM (2004) Crystal structure of RumA, an iron–sulfur cluster containing E. coli ribosomal RNA 5-methyluridine methyltransferase. Structure 12:397–407

    CAS  PubMed  Google Scholar 

  • Lee TT, Agarwalla S, Stroud RM (2005) A unique RNA Fold in the RumA-RNA-cofactor ternary complex contributes to substrate selectivity and enzymatic function. Cell 120:599–611

    CAS  PubMed  Google Scholar 

  • Lesley SA, Kuhn P, Godzik A, Deacon AM, Mathews I, Kreusch A, Spraggon G, Klock HE, McMullan D, Shin T, Vincent J, Robb A, Brinen LS, Miller MD, McPhillips TM, Miller MA, Scheibe D, Canaves JM, Guda C, Jaroszewski L, Selby TL, Elsliger M-A, Wooley J, Taylor SS, Hodgson KO, Wilson IA, Schultz PG, Stevens RC (2002) Structural genomics of the Thermotoga maritima proteome implemented in a high-throughput structure determination pipeline. Proc Natl Acad Sci USA 99:11664–11669

    CAS  PubMed  Google Scholar 

  • Liu J, Schmitz JC, Lin X, Tai N, Yan W, Farrell M, Bailly M, Chen T, Chu E (2002) Thymidylate synthase as a translational regulator of cellular gene expression. Biochim Biophys Acta 1587:174–182

    CAS  PubMed  Google Scholar 

  • Mason A, Agrawal N, Washington MT, Lesley SA, Kohen A (2006) A lag-phase in the reduction of flavin dependent thymidylate synthase (FDTS) revealed a mechanistic missing link. Chem Commun 16:1781–1783

    Google Scholar 

  • Mathews II, Deacon AM, Canaves JM, McMullan D, Lesley SA, Agarwalla S, Kuhn P (2003) Functional analysis of substrate and cofactor complex structures of a thymidylate synthase-complementing protein. Structure 11:677–690

    CAS  PubMed  Google Scholar 

  • Mattevi A (2006) To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem Sci 31:276–283

    CAS  PubMed  Google Scholar 

  • Murzin AG (2002) Biochemistry. DNA building block reinvented. Science 297:61–62

    CAS  PubMed  Google Scholar 

  • Myllykallio H, Lipowski G, Leduc D, Filee J, Forterre P, Liebl U (2002) An alternative flavin-dependent mechanism of thymidylate synthesis. Science 297:105–107

    CAS  PubMed  Google Scholar 

  • Persson BC, Grustafsson C, Berg DE, Bjork GR (1992) The gene for a tRNA modifying enzyme, m5U54-methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 89:3995–3998

    CAS  PubMed  Google Scholar 

  • Pharkya P, Nikolaev EV, Maranas CD (2003) Review of the BRENDA Database. Metab Eng 5:71–73

    CAS  PubMed  Google Scholar 

  • Romeo JM, Delk AS, Rabinowitz JC (1974) The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA. Biochem Biophys Res Commun 61:1256–1261

    CAS  PubMed  Google Scholar 

  • Sampathkumar P, Turley S, Ulmer JE, Rhie HG, Sibley CH, Hol WGJ (2005) Structure of the Mycobacterium tuberculosis flavin dependent thymidylate synthase (MtbThyX) at 2.0 resolution. J Mol Biol 352:1091–1104

    CAS  PubMed  Google Scholar 

  • Sampathkumar P, Turley S, Sibley CH, Hol WG (2006) NADP(+) expels both the co-factor and a substrate analog from the Mycobacterium tuberculosis ThyX active site: opportunities for anti-bacterial drug design. J Mol Biol 360:1–6

    CAS  PubMed  Google Scholar 

  • Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM (1993) Structure-based discovery of inhibitors of thymidylate synthase. Science 259:1445–1450

    CAS  PubMed  Google Scholar 

  • Stout TJ, Tondi D, Rinaldi M, Barlocco D, Pecorari P, Santi DV, Kuntz ID, Stroud RM, Shoichet BK, Costi MP (1999) Structure-based design of inhibitors specific for bacterial thymidylate synthase. Biochemistry 38:1607–1617

    CAS  PubMed  Google Scholar 

  • Tai N, Schmitz JC, Liu J, Lin X, Bailly M, Chen TM, Chu E (2004) Translational autoregulation of thymidylate synthase and dihydrofolate reductase. Front Biosci 9:2521–2526

    CAS  PubMed  Google Scholar 

  • Tondi D, Slomczynska U, Costi MP, Watterson DM, Ghelli S, Shoichet BK (1999) Structure-based discovery and in-parallel optimization of novel competitive inhibitors of thymidylate synthase. Chem Biol 6:319–331

    CAS  PubMed  Google Scholar 

  • Urbonavicius J, Skouloubris S, Myllykallio H, Grosjean H (2005) Identification of a novel gene encoding a flavin-dependent tRNA: m5U methyltransferase in bacteria-evolutionary implications. Nucleic Acids Res 33:3955–3964

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH R01 GM65368-01 and NSF CHE-0133117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amnon Kohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chernyshev, A., Fleischmann, T. & Kohen, A. Thymidyl biosynthesis enzymes as antibiotic targets. Appl Microbiol Biotechnol 74, 282–289 (2007). https://doi.org/10.1007/s00253-006-0763-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-006-0763-1

Keywords

Navigation