Skip to main content
Log in

Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The obligate photoautotrophic cyanobacterium Synechococcus PCC7942 and the photoheterotrophic heterocystous cyanobacterium Noctoc muscorum are able to reduce prochiral ketones asymmetrically to optical pure chiral alcohols without light. An example is the synthesis of S-pentafluoro(phenyl-)ethanol with an enantiomeric excess >99% if 2′-3′-4′-5′-6′-pentafluoroacetophenone is used as substrate. If no light is available for regeneration of the cofactor nicotinamide adenine dinucleotide phosphate (reduced form) (NADPH), glucose is used as cosubstrate. Membrane disintegration during asymmetric reduction promotes cytosolic energy generating metabolic pathways. Observed regulatory effects depicted by an adenosine triphosphate (ATP) to nicotinamide adenine dinucleotide phosphate (oxidized form) (NADP+) ratio of 3:1 for efficient cofactor recycling indicate a metabolization via glycolisis. The stoichiometric formation of the by-product acetate (1 mol acetate/1 mol chiral alcohol) indicates homoacetic acid fermentation for cofactor regeneration including the obligate photoautotrophic cyanobacterium Synechococcus PCC7942.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen MM (1968) Simple conditions for the growth of unicellular blue-green algae on plates. J Phycol 4:1–4

    Article  CAS  Google Scholar 

  • Carr NG, Whitton BA (1973) The biology of blue-green algae. Botanical monographs. Blackwell, Osney Mead, Oxford

    Google Scholar 

  • Eckstein M, Daußmann T, Kragl U (2004) Recent developments in NAD(P)H regeneration for enzymatic reductions in one- and two-phase systems. Biocatal Biotransform 22:89–96

    Article  CAS  Google Scholar 

  • Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Martins dos Santos VAP, Yakimov MM, Timmis KN, Golyshin PN (2005) Microbial enzymes mined from the urania deep-sea hypersaline anoxic basin. Chem Biol 12:904–985

    Article  Google Scholar 

  • Franco-Lara E, Havel J, Peterat F, Weuster-Botz D (2006) Model-supported optimization of phototrophic growth in a stirred-tank photobioreactor. Biotechnol Bioeng 95(6):1177–1187

    Article  CAS  Google Scholar 

  • Gelo-Pujic M, Le Gyader F, Schlama T (2006) Microbial and homogenous asymmetric catalysis in the reduction of 1-[3,5-bis(trifluoromethyl)phenyl]ethanol. Tetrahedron: Asymmetry 17:2000–2005

    Article  CAS  Google Scholar 

  • Hamada H, Kondo Y, Ishihara K, Nakajima N, Hamada H, Kurihara R, Hirata T (2003) Stereoselective biotransformation of limonene and limonene oxide by cyanobacterium, Synechococcus sp. PCC 7942. J Biosci Bioeng 96(6):581–584

    Article  CAS  Google Scholar 

  • Havel J, Weuster-Botz D (2006) Comparative study of cyanobacteria as biocatalysts for the asymmetric synthesis of chiral building blocks. Eng Life Sci 6:175–179

    Article  CAS  Google Scholar 

  • Havel J, Link H, Hofinger M, Franco-Lara E, Weuster-Botz D (2006) Comparison of genetic algorithms for experimental multi-objective optimization on the example of medium design for cyanobacteria. Biotechnol J 1:549–555

    Article  CAS  Google Scholar 

  • Heiss C, Laivenieks M, Zeikus G, Phillips RS (2001) Mutation of cysteine-295 to alanine in secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus affects enantioselectivity and substrate specificity of ketone reductions. Bioorganic Med Chem 9:1659–1666

    Article  CAS  Google Scholar 

  • Hummel W, Abokitse K, Drauz K, Rollmann C, Gröger H (2003) Towards a large-scale asymmetric reduction process with isolated enzymes: expression of an (S)-alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst. Adv Synth Catal 345:153–159

    Article  CAS  Google Scholar 

  • Knowles VL, Plaxton WC (2003) From genome to enzyme: analysis of key glycolitic and oxidative pentosephosphate pathway enzymes in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 44(7):758–763

    Article  CAS  Google Scholar 

  • Kroutil W, Mang H, Edegger K, Faber K (2004) Recent advances in the biocatalytic reduction of ketones and oxidation o sec-alcohols. Curr Opin Chem Biol 8:120–126

    Article  CAS  Google Scholar 

  • Nakamura K, Yamanaka R (2002) Light-mediated regulation of asymmetric reduction of ketones by a cyanobacterium. Tetrahedron: Asymmetry 16:2529–2533

    Article  Google Scholar 

  • Nakamura K, Yamanaka R, Tohi K, Hamada H (2000) Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Lett 41:6799–6802

    Article  CAS  Google Scholar 

  • Nakamura K, Yamanaka R, Matsuda T, Harada T (2003) Recent developments in asymmetric reduction of ketones with biocatalysts. Tetrahedron: Asymmetry 14(18):2659–2681

    Article  CAS  Google Scholar 

  • Noma Y, Asakawa Y (1992) Enantio- and stereoselectivity in the biotransformation of carveols by Euglena gracilis Z. Phytochemistry 31(6):2009–2011

    Article  CAS  Google Scholar 

  • Pearce J, Carr NG (1969) The incorporation and metabolism of glucose by Anabaena variabilis. J Gen Microbiol 54:451–462

    Article  CAS  Google Scholar 

  • Peschek GA (1979) The role of the calvin cycle for anoxygenic CO2 photoassimilation in Anacystic nidulans. FEBS Lett 106(1):34–38

    Article  CAS  Google Scholar 

  • Pfruender H, Jones R, Weuster-Botz D (2006) Water immiscible ionic liquids as solvents for whole cell biocatalysis. J Biotechnol 124:182–190

    Article  CAS  Google Scholar 

  • Reetz MT (2006) Direct evolution of enantioselective enzymes as catalysts for organic synthesis. Adv Catal 49:1–69

    CAS  Google Scholar 

  • Rippka R, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111(2):1–61

    Google Scholar 

  • Rosen TC, Feldmann R, Dünkelmann P, Daußmann T (2006) Bioreductive synthesis of perfluorinated chiral alcohols. Tetrahedron Lett 47:4803–4806

    Article  CAS  Google Scholar 

  • Shimoda K, Hirata T (2000) Biotransformation of enones with biocatalysts- two enone reductases from Astasia longa. J Mol Catal B Enzym 8:255–264

    Article  CAS  Google Scholar 

  • Shimoda K, Kubota N, Hamada H, Kajib M, Hirata T (2004) Asymmetric reduction of enones with Synechococcus sp. PCC 7942. Tetrahedron: Asymmetry 15:1677–1679

    Article  CAS  Google Scholar 

  • Stal LJ (1992) Poly(hydroxyalkanoate) in cyanobacteria: an overview. FEMS Microbiol Rev 103:169–180

    Article  CAS  Google Scholar 

  • Stal LJ, Moezelaar R (1997) Fermentation in cyanobacteria. FEMS Microbiol Rev 21:179–211

    Article  CAS  Google Scholar 

  • Wu JT, Wu LH, Knight JA (1986) Stability of NADPH: effects of various factors on the kinetics of degradation. Clin Chem 32:314–319

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Weuster-Botz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havel, J., Weuster-Botz, D. Cofactor regeneration in phototrophic cyanobacteria applied for asymmetric reduction of ketones. Appl Microbiol Biotechnol 75, 1031–1037 (2007). https://doi.org/10.1007/s00253-007-0910-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-0910-3

Keywords

Navigation