Skip to main content
Log in

Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Enzymes are able to perform reactions under mild conditions, e.g., pH and temperature, with remarkable chemo-, regio-, and stereoselectivity. Due to this feature the number of biocatalysts used in organic synthesis has rapidly increased during the last decades, especially for the production of chiral compounds. The present review highlights biotechnological processes for the production of chiral alcohols by reducing prochiral ketones with whole cells. Microbial transformations feature different characteristics in comparison to isolated enzymes. Enzymes that are used in whole-cell biotransformations are often more stable due to the presence of their natural environment inside the cell. Because reductase-catalyzed reactions are dependent on cofactors, one major task in process development is to provide an effective method for regeneration of the consumed cofactors. Many whole-cell biocatalysts offer their internal cofactor regeneration that can be used by adding cosubstrates, glucose or, in the case of cyanobacteria, simply light. In this paper, various processes carried out on laboratory and industrial scales are presented. Thereby, attention is turned to process parameters, e.g., conversion, yield, enantiomeric excess, and process strategies, e.g., the application of biphasic systems. The biocatalytic production of chiral alcohols utilizing isolated enzymes is presented in part I of this review (Goldberg et al., Appl Microbiol Biotechnol, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amidjojo M, Weuster-Botz D (2005) Asymmetric synthesis of the chiral synthon ethyl (S)-4-chloro-3-hydroxybutanoate using Lactobacillus kefir. Tetrahedron Asymmetry 16:899–901

    CAS  Google Scholar 

  • Amidjojo M, Franco-Lara E, Nowak A, Link H, Weuster-Botz D (2005) Asymmetric synthesis of tert-butyl (3R,5S) 6-chloro-dihydroxyhexanoate with Lactobacillus kefir. Appl Microbiol Biotechnol 69:9–15

    CAS  PubMed  Google Scholar 

  • Bertau M, Burli M (2000) Enantioselective microbial reduction with baker’s yeast on an industrial scale. Chimia 54:503–507

    CAS  Google Scholar 

  • Blacklock TJ, Sohar P, Butcher JW, Lamanec T, Grabowski EJJ (1993) An enantioselective synthesis of the topically-active carbonic anhydrase inhibitor MK-0507: 5,6-dihydro-(S)-4-(ethylamino)-(S)-6-methyl-4H-thieno[ 2,3-b]thiopyran-2-sulfonamide 7,7-dioxide hydrochloride. J Org Chem 58:1672–1679

    CAS  Google Scholar 

  • Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T (2004) Industrielle Verfahren zur Herstellung von optisch aktiven Zwischenprodukten. Angew Chem 116:806–843, Angew Chem Int Ed 43:788–824

    Google Scholar 

  • Chartrain M, Roberge C, Chung J, McNamara J, Zhao D, Olewinski R, Hunt G, Salmon P, Roush D, Yamazaki S, Wang T, Grabowski E, Buckland B, Greasham R (1999) Asymmetric bioreduction of (2-(4-nitro-phenyl)-N-(2-oxo-2-pyridin-3-yl-ethyl)-acetamide) to its corresponding (R)-alcohol [(R)-N-(2-hydroxy-2-pyridin-3-yl-ethyl)-2-(4-nitro-phenyl)-acetamide] by using Candida sorbophila MY 1833. Enzyme Microb Technol 25:489–496

    CAS  Google Scholar 

  • Csuk R (1991) Baker’s yeast mediated transformations in organic chemistry. Chem Rev 91:49–97

    CAS  Google Scholar 

  • Edegger K, Stampfer W, Seisser B, Faber K, Mayer SF, Oehrlein R, Hafner A, Kroutil W (2006a) Regio- and stereoselective reduction of diketones and oxidation of diols by biocatalytic hydrogen transfer. Eur J Org Chem 2006(8):1904–1909

    Google Scholar 

  • Edegger K, Gruber CC, Faber K, Hafner A, Kroutil W (2006b) Optimization of reaction parameters and cultivation conditions for biocatalytic hydrogen transfer employing overexpressed ADH-′A′ from Rhodococcus ruber DSM 44541 in Escherichia coli. Eng Life Sci 6:149–154

    CAS  Google Scholar 

  • Engelking H, Pfaller R, Wich G, Weuster-Botz D (2006) Reaction engineering studies on β-ketoester reductions with whole cells of recombinant Saccharomyces cerevisiae. Enzyme Microb Technol 38:536–544

    CAS  Google Scholar 

  • Ernst M, Kaup B, Müller M, Bringer-Meyer S, Sahm H (2005) Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Appl Microbiol Biotechnol 66:629–634

    Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry, 5th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Floyd DM, Moquin RV, Atwal KS, Ahmed SZ, Spergel SH, Gougoutas JZ, Malley MF (1990) Synthesis of benzazepinone and 3-methylbenzothiazepinone analogues of diltiazem. J Org Chem 55:5572–5579

    CAS  Google Scholar 

  • Goldberg K, Edegger K, Kroutil W, Liese A (2006) Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol Bioeng 95:192–198

    CAS  PubMed  Google Scholar 

  • Goldberg K, Schroer K, Lütz S, Liese A (2007) Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part I: processes with isolated enzymes. Appl Microbiol Biotechnol (in this issue)

  • Gröger H, Chamouleau F, Orologas N, Rollmann C, Drauz K, Hummel W, Weckbecker A, May O (2006) Enantioselektive Ketonreduktion mit “Designerzellen” bei hohen Substratkonzentrationen: hocheffizienter Zugang zu funktionalisierten optisch aktiven Alkoholen. Angew Chem 118:5806–5809, Angew Chem Int Ed 45:5677–5681

    Google Scholar 

  • Haberland J, Kriegesmann A, Wolfram E, Hummel W, Liese A (2002a) Diastereoselective synthesis of optically active (2R,5R)-hexanediol. Appl Microbiol Biotechnol 58:595–599

    CAS  PubMed  Google Scholar 

  • Haberland J, Hummel W, Daußmann T, Liese A (2002b) New continuous production process for enantiopure (2R,5R)-hexanediol. Org Process Res Dev 6:458–462

    CAS  Google Scholar 

  • Havel J, Weuster-Botz D (2006) Comparative study of cyanobacteria as biocatalysts for the asymmetric synthesis of chiral building blocks. Eng Life Sci 6:175–179

    CAS  Google Scholar 

  • Holt RA (1996) Microbial asymmetric reduction in the synthesis of a drug intermediate. Chim Oggi 14:17–20

    CAS  Google Scholar 

  • Jones TK, Mohan JJ, Xavier LC, Blacklock TJ, Mathre DJ, Sohar P, Turner Jones ET, Reamer RA, Roberts FE, Grabowski EJJ (1991) An asymmetric synthesis of MK-0417. Observations on oxazaborolidine-catalyzed reductions. J Org Chem 56:763–769

    CAS  Google Scholar 

  • Kaluzna IA, Feske BD, Wittayanan W, Ghiviriga I, Stewart JD (2005) Stereoselective, biocatalytic reductions of α-chloro-β-keto esters. J Org Chem 70:342–345

    CAS  PubMed  Google Scholar 

  • Kaup B, Bringer-Meyer S, Sahm H (2004) Metabolic engineering of Escherichia coli: construction of an efficient biocatalyst for d-mannitol formation in a whole-cell biotransformation. Appl Microbiol Biotechnol 64:333–339

    CAS  PubMed  Google Scholar 

  • Kizaki N, Yasohara Y, Hasegawa J, Wada M, Kataoka·M, Shimizu S (2001) Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl Microbiol Biotechnol 55:590–595

    CAS  PubMed  Google Scholar 

  • Nakamura K, Matsuda T (2002) Reduction of ketones. In: Drauz K, Waldmann H (eds) Enzyme catalysis in organic synthesis, vol. III, 2nd edn. Wiley–VCH Verlag GmbH, Weinheim, pp 991–1047

    Google Scholar 

  • Nakamura K, Yamanaka R, Tohi K, Hamada H (2000) Cyanobacterium-catalyzed asymmetric reduction of ketones. Tetrahedron Lett 41:6799–6802

    CAS  Google Scholar 

  • Nanduri VB, Hanson RL, Goswami A, Wasylyk JM, LaPorte TL, Katipally K, Chung HJ, Patel RN (2001) Biochemical approaches to the synthesis of ethyl 5-(S)-hydroxyhexanoate and 5-(S)-hydroxyhexanenitrile. Enzyme Microb Technol 28:632–636

    CAS  PubMed  Google Scholar 

  • Patel RN, Robison RS, Szarka LJ, Kloss J, Thottathil JH, Muller RH (1991) Stereospecific microbial reduction of 4,5-dihydro-4-(4-methoxyphenyl)-6-(trifluoromethyl-1H-1)-benzazepin-2-one. Enzyme Microb Technol 13:906–912

    CAS  PubMed  Google Scholar 

  • Patel RN, McNamee CG, Banerjee A, Howell JM, Robison RS, Szarka LJ (1992) Stereoselective reduction of β-keto esters by Geotrichum candidum. Enzyme Microb Technol 14:731–738

    CAS  Google Scholar 

  • Patel RN, Chu L, Chidambaram R, Zhu J, Kant J (2002) Enantioselective microbial reduction of 2-oxo-2-(1′,2′,3′,4′-tetrahydro-1′,1′,4′,4′-tetramethyl-6′-naphthalenyl)acetic acid and its ethyl ester. Tetrahedron Asymmetry 13:349–355

    CAS  Google Scholar 

  • Peters J, Zelinski T, Kula MR (1992) Studies on the distribution and regulation of microbial keto ester reductases. Appl Microbiol Biotechnol 38:334–340

    CAS  Google Scholar 

  • Rodriguez S, Kayser M, Stewart JD (1999) Improving the stereoselectivity of bakers’ yeast reductions by genetic engineering. Org Lett 1:1153–1155

    CAS  PubMed  Google Scholar 

  • Rodriguez S, Kayser MM, Stewart JD (2001) Highly stereoselective reagents for β-keto ester reductions by genetic engineering of baker’s yeast. J Am Chem Soc 123:1547–1555

    CAS  PubMed  Google Scholar 

  • Shaw NM, Robins KT, Kiener A (2003) Lonza: 20 years of biotransformations. Adv Synth Catal 345:425–435

    CAS  Google Scholar 

  • Shih TL, Candelore MR, Cascieri MA, Chiu SHL, Colwell LF, Jr, Deng L, Feeney WP, Forrest MJ, Hom GJ, Maclntyre DE, Miller RR, Stearns RA, Strader CD, Tota L, Wyvratt MJ, Fisher MH, Weber AE (1999) L-770,644: a potent and selective human β3 adrenergic receptor agonist with improved oral bioavailability. Bioorg Med Chem Lett 9:1251–1254

    PubMed  Google Scholar 

  • Stampfer W, Kosjek B, Moitzi C, Kroutil W, Faber K (2002) Biocatalytic asymmetric hydrogen transfer. Angew Chem 114:1056–1059, Angew Chem Int Ed 41:1014–1017

    Google Scholar 

  • Stampfer W, Edegger K, Kosjek B, Faber K, Kroutil W (2004) Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv Synth Catal 346:57–62

    CAS  Google Scholar 

  • Stewart JD (2001) Dehydrogenases and transaminases in asymmetric synthesis. Curr Opin Chem Biol 5:120–129

    CAS  PubMed  Google Scholar 

  • Tan AWI, Fischbach M, Huebner H, Buchholz R, Hummel W, Daußmann T, Wandrey C, Liese A (2006) Synthesis of enantiopure (5R)-hydroxyhexane-2-one with immobilized whole cells of Lactobacillus kefiri. Appl Microbiol Biotechnol 71:289–293

    CAS  PubMed  Google Scholar 

  • Watanabe T, Koller K, Messner K (1998) Copper-dependent depolymerization of lignin in the presence of fungal metabolite, pyridine. J Biotechnol 62:221–230

    CAS  PubMed  Google Scholar 

  • Weckbecker A, Hummel W (2004) Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase. Biotechnol Lett 26:1739–1744

    CAS  PubMed  Google Scholar 

  • Zaks A, Dodds DR (1997) Application of biocatalysis and biotransformations to the synthesis of pharmaceuticals. Drug Discov Today 2:513–531

    CAS  Google Scholar 

  • Zhang J, Witholt B, Lia Z (2006) Efficient NADPH recycling in enantioselective bioreduction of a ketone with permeabilized cells of a microorganism containing a ketoreductase and a glucose 6-phosphate dehydrogenase. Adv Synth Catal 348:429–433

    CAS  Google Scholar 

Download references

Acknowledgment

Both Goldberg and Schroer did equally contribute to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Liese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, K., Schroer, K., Lütz, S. et al. Biocatalytic ketone reduction—a powerful tool for the production of chiral alcohols—part II: whole-cell reductions. Appl Microbiol Biotechnol 76, 249–255 (2007). https://doi.org/10.1007/s00253-007-1005-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1005-x

Keywords

Navigation