Skip to main content
Log in

Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Three endoxylanase genes were cloned from the thermophilic fungus Chaetomium thermophilum CBS 730.95. All genes contained the typical consensus sequence of family 11 glycoside hydrolases. Genomic copies of Ct xyn11A, Ct xyn11B, and Ct xyn11C were expressed in the filamentous fungus T. reesei under the control of the strong T. reesei cel7A (cellobiohydrolase 1, cbh1) promoter. The molecular masses of the Ct Xyn11A, Ct Xyn11B, and Ct Xyn11C proteins on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) were 27, 23, and 22 kDa, respectively. Ct Xyn11A was produced almost as efficiently as the homologous xylanase II from a corresponding single-copy transformant strain. Ct Xyn11B production level was approximately half of that of Ct Xyn11A. The amount of Ct Xyn11C was remarkably lower. Ct Xyn11A had the highest temperature optimum and stability of the recombinant xylanases and the highest activity at acid-neutral pH (pH 5–7). It was the most suitable for industrial bleaching of kraft pulp at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Baraznenok VA, Becker EG, Ankudimova NV, Okunev NN (1999) Characterization of neutral xylanases from Chaetomium cellulolyticum and their biobleaching effect on eucalyptus pulp. Enzyme Microb Technol 25:651–659

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbial Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Faria FP, Te’o VSJ, Bergquist PL, Azevedo MO (2002) Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei. Lett Appl Microbiol 34:119–123

    Article  Google Scholar 

  • Gandhi JP, Rao KK, Dave PJ (1994) Characterization of extracellular thermostable xylanase from Chaetomium globosum. J Chem Biotechnol 60:55–60

    Article  CAS  Google Scholar 

  • Ganju RK, Vithayathil PJ, Murthy SK (1989) Purification and characterization of two xylanases from Chaetomium thermophile var. coprophile. Can J Microbiol 35:836–842

    Article  CAS  Google Scholar 

  • Hakulinen N, Turunen O, Jänis J, Leisola M, Rouvinen J (2003) Three-dimensional structures of thermophilic β-1,4-xylanases from Chaetomium thermophilum and Nonomurea flexuosa. Comparison of twelve xylanases in relation to their thermal stability. Eur J Biochem 270:1399–1412

    Article  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7:637–644

    Article  CAS  Google Scholar 

  • Irwin D, Jung ED, Wilson DB (1994) Characterization and sequence of a Thermomonospora fusca xylanase. Appl Environ Microbiol 60:763–770

    Article  CAS  Google Scholar 

  • Karhunen T, Mäntylä A, Nevalainen KMH, Suominen PL (1993) High frequency one-step gene replacement in Trichoderma reesei. I. Endoglucanase I overproduction. Mol Gen Genet 241:515–522

    Article  CAS  Google Scholar 

  • Lappalainen A, Siika-aho M, Kalkkinen N, Fagerström R (2000) Endoxylanase II from Trichoderma reesei has several isoforms with different isoelectric points. Biotechnol Appl Biochem 31:61–68

    Article  CAS  Google Scholar 

  • Leskinen S, Mäntylä A, Fagerström R, Vehmaanperä J, Lantto R, Paloheimo M, Suominen P (2005) Thermostable xylanases, Xyn10A and Xyn11A, from the actinomycete Nonomuraea flexuosa: isolation of the genes and characterization of recombinant Xyn11A polypeptides produced in Trichoderma reesei. Appl Microbiol Biotechnol 67:495–505

    Article  CAS  Google Scholar 

  • Mäntylä A, Saarelainen R, Fagerström R, Suominen P, Nevalainen H (1994) Cloning of the aspartic protease gene of Trichoderma reesei. In: Second European Conference on Fungal Genetics, Lunteren, The Netherlands, Abstract B52

  • Mäntylä A, Paloheimo M, Suominen P (1998) Industrial mutants and recombinant strains of Trichoderma reesei. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol. 2, Taylor and Francis, London, United Kingdom, pp 291–309

    Google Scholar 

  • Mimura S, Rao U, Yoshino S, Kato M, Tsukagoshi N (1998) Derepression of the xylanase-encoding cgxA gene of Chaetomium gracile in Aspergillus nidulans. Microbiol Res 153:369–376

    Article  CAS  Google Scholar 

  • Nevalainen KMH, Te’o VSJ (2003) Enzyme production in industrial fungi —strategies for integrated strain improvement. In: Arora DK, Khachatourians GG (eds) Appl Mycol Biotechnol, vol. 3, fungal genetics. Elsevier, The Netherlands, pp 241–259

    Google Scholar 

  • Nevalainen KMH, Te’o VSJ, Bergquist PL (2005) Heterologous protein expression in filamentous fungi. Trends Biotechnol 23:468–474

    Article  CAS  Google Scholar 

  • Paloheimo M, Mäntylä A, Kallio J, Suominen P (2003) High-yield production of a bacterial xylanase in the filamentous fungus Trichoderma reesei requires a carrier polypeptide with an intact domain structure. Appl Environ Microbiol 69:7073–7082

    Article  CAS  Google Scholar 

  • Penttilä M (1998) Heterologous protein production in Trichoderma. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol. 2. Taylor and Francis, London, United Kingdom, pp 365–382

    Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  • Punt PJ, van Biezen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  CAS  Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Article  CAS  Google Scholar 

  • Rao U, Marui J, Kato M, Kobayashi T, Tsukagoshi N (2002) Regulation of the xylanase gene, cgxA, from Chaetomium gracile by transcriptional factors, XlnR and AnRP. Biotechnol Lett 24:1089–1096

    Article  CAS  Google Scholar 

  • Rao U, Kato M, Tsukagoshi N (2003) Characterization of AnRP-mediated negative regulation of the xylanase gene, cgxA, from Chaetomium gracile in Aspergillus nidulans. Lett Appl Microbiol 36:59–63

    Article  CAS  Google Scholar 

  • Saarelainen R, Paloheimo M, Fagerstöm R, Suominen PL, Nevalainen KMH (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mol Gen Genet 241:497–503

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Subramaniyan S, Prema P (2002) Biotechnology of microbial xylanases: enzymology, molecular biology, and application. Crit Rev Biotechnol 22:33–64

    Article  CAS  Google Scholar 

  • Suurnäkki A, Tenkanen M, Buchert J, Viikari L (1997) Hemicellulases in the bleaching of chemical pulps. Adv Biochem Eng Biotechnol 57:261–287

    PubMed  Google Scholar 

  • Te’o VSJ, Czifersky AE, Bergquist PL, Nevalainen KMH (2000) Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. FEMS Microbiol Lett 190:13–19

    Article  Google Scholar 

  • Törrönen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Biotechnology 10:1461–1465

    PubMed  Google Scholar 

  • Yoshino S, Oishi M, Moriyama R, Kato M, Tsukagoshi N (1995) Two family G xylanase genes from Chaetomium gracile and their expression in Aspergillus nidulans. Curr Genet 29:73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Varpu Backman, Merja Helanterä, Sanna Hiljanen-Berg, Kirsti Leskinen, Outi Nikkilä, Jaana Oksanen, and Riitta Tarkiainen for skillful technical assistance. Sirpa Holm, Sirpa Okko, Elke Parkkinen, Auli Sinnemäki, and Tarja Sjöblom are thanked for performing the laboratory-scale fermentations. Nisse Kalkkinen is acknowledged for performing the peptide analyses and mass spectrometry. George Szakacs is acknowledged for kindly providing the C. thermophilum host strain and David Wilson for the T. fusca TfxA antibody. Nina Hakulinen and Richard Fagerström are thanked for useful discussions. John Londesborough is acknowledged for critically reading the manuscript and for correcting the language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arja Mäntylä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mäntylä, A., Paloheimo, M., Hakola, S. et al. Production in Trichoderma reesei of three xylanases from Chaetomium thermophilum: a recombinant thermoxylanase for biobleaching of kraft pulp. Appl Microbiol Biotechnol 76, 377–386 (2007). https://doi.org/10.1007/s00253-007-1020-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1020-y

Keywords

Navigation