Skip to main content

Advertisement

Log in

Biofuels from microbes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Today, biomass covers about 10% of the world’s primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anonymous (2004) Biomethanol from sugar beat pulp. Energy & Sustainable Development Magazine, No. 3, p 15

  • Ariesyady HD, Ito T, Okabe S (2007) Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester. Water Res 41:1554–1568

    Article  CAS  PubMed  Google Scholar 

  • Brooks TA, Ingram LO (1995) Conversion of mixed waste office paper to ethanol by genetically engineered Klebsiella oxytoca strain P2. Biotechnol Prog 11:619–625

    Article  CAS  Google Scholar 

  • Cheng KK, Zhang JA, Liu DH, Sun Y, Liu HJ, Yang MD, Xu JM (2007) Pilot-scale production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem 42:740–744

    Article  CAS  Google Scholar 

  • Cirne DG, Lehtomäki A, Björnsson L, Blackall LL (2007) Hydrolysis and microbial community analyses in two-stage anaerobic digestion of energy crops. J Appl Microbiol 103:516–527

    Article  CAS  PubMed  Google Scholar 

  • Claassen PAM, de Vrije T, Budde MAW (2004) Biological hydrogen production from sweet sorghum by thermopilic bacteria. Proceedings 2nd World Conference on Biomass for Energy, Rome, pp 1522–1525

  • Das D, Verziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28

    Article  CAS  Google Scholar 

  • de Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Dutch Biological Hydrogen Foundation, Petten, pp 103–123

  • de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrogen Energy 27:1381–1390

    Article  Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuels. Progr Energy Combust Sci 33:1–18

    Article  CAS  Google Scholar 

  • EIA (2006) International energy: outlook. Energy Information Administration, Office of Integrated Analysis and Forecasting. US Department of Energy, Washington, DOE/EIA-0484

  • Einspanier R, Lutz B, Rief S, Berezina O, Zverlov V, Schwarz WH, Mayer J (2004) Tracing residual recombinant feed molecules during digestion and rumen bacterial diversity in cattle fed transgene maize. Eur Food Res Technol 218:269–273

    Article  CAS  Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-) hydrogen production. Trends Plant Sci 11:543–549

    Article  CAS  PubMed  Google Scholar 

  • Eurostat (2007) Online Database of the European Union: http://epp.eurostat.ec.europa.eu, Eurostat, 2920 Luxembourg, 08.05.2007

  • Finlay MR (2004) Old efforts at new uses: a brief history of chemurgy and the American search for biobased materials. J Ind Ecol 7:33–46

    Article  Google Scholar 

  • FNR (2007) Fachagentur Nachwachsende Rohstoffe e.V.: Biokraftstoffe, online database: http://www.fnr-server.de/cms35/Biokraftstoffe.817.0.html, D-Gülzow, 10.05.2007

  • Gapes JR (2000) The economics of acetone–butanol fermentation: theoretical and market considerations. J Mol Microbiol Biotechnol 2:27–32

    CAS  PubMed  Google Scholar 

  • Gapes JR, Gapes RF (2007) Relevance & economics of a biodiesel/biofuels industry. Vision 20/20, IPENZ Annual Conference, Auckland, New Zealand, 23 March, 2007

  • Gassen HG (2005) Ein Beitrag zur umweltfreundlichen Energieversorgung: Biogasanlagen. Biol in Unserer Zeit 6:384–392

    Article  Google Scholar 

  • Giebelhaus AW (1980) Farming for fuel: the alcohol motor fuel movement in the 1930s. Agric Hist 54:173–184

    Google Scholar 

  • Golias H, Dumsday GJ, Stanley GA, Pamment NB (2002) Evaluation of a recombinant Klebsiella oxytoca strain for ethanol production from cellulose by simultaneous saccharification and fermentation: comparison with native cellobiose-utilising yeast strains and performance in co-culture with thermotolerant yeast and Zymomonas mobilis. J Biotechnol 96:155–168

    Article  CAS  PubMed  Google Scholar 

  • Gray KA, Zhao L, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  PubMed  Google Scholar 

  • GTZ (2005) German technical cooperation: liquid biofuels for transportation in Tanzania—potential and implications for sustainable agriculture and energy in the 21st century, August 2005

  • Hahn-Hägerdahl B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  CAS  Google Scholar 

  • Hayn M, Steiner W, Klinger R, Steinmüller H, Sinner M, Esterbauer H (1993) Basic research and pilot studies on the enzymatic conversion of lignocellulosics. In: Saddler JN (ed) Bioconversion of forest and agricultural residue. Biotechnology in agriculture series, no. 9. CAB International, Wallingford, UK, pp 33–72

    Google Scholar 

  • Henstra AM, Sipma J, Rinzema A, Stams AJM (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:1–7 (corrected proof, available online 30 March 2007)

    Article  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IEA (2004) Biofuels for transport: an international perspective. International Energy Agency, Paris

    Google Scholar 

  • Ingram LO, Doran JB (1995) Conversion of cellulosic materials to ethanol. FEMS Microbiol Rev 16:235–241

    Article  CAS  Google Scholar 

  • IPCC; Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate Change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, UK, p 944

  • Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Judd B (2003) Feasibility of producing diesel fuels from biomass in New Zealand. Energy Efficiency and Conservation Authority, New Zealand, June 2003 online: http://eeca.govt.nz/eeca-library/renewable-energy/bioenergy/report/feasibility-of-producing-diesel-fuels-from-biomass-in-nz-03.pdf

  • Kalscheuer R, Stölting T, Steinbüchel A (2006) Microdiesel: Escherichia coli engineered for fuel production. Microbiology 152:2529–2536

    Article  CAS  PubMed  Google Scholar 

  • Kildiran G, Yücel SÖ, Türkay S (1996) In-situ alcoholysis of soybean oil. JAOCS 73:225–228

    Article  CAS  Google Scholar 

  • Klocke M, Mähnert P, Mundt K, Souidi K, Linke B (2007) Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol 30:139–151

    Article  CAS  PubMed  Google Scholar 

  • Kovarik B (1998) Henry Ford, Charles Kettering, and the “fuel of the future.” Automot Hist Rev 32:7–27. Reproduced at http://www.radford.edu/_wkovarik/papers/fuel.html

  • Lapuerta M, Armas O, Garcia-Contreras R (2007) Stability of diesel–bioethanol blends for use in diesel engines. Fuel 86:1351–1357

    Article  CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15

    Article  CAS  Google Scholar 

  • Malhotra R (2007) Road to emerging alternatives—biofuels and hydrogen. Journal of the Petrotech Society 4:34–40

    Google Scholar 

  • Moniruzzaman M, Dien BS, Ferrer B, Hespell RB, Dale BE, Ingram LO, Bothast RJ (1996) Ethanol production from AFEX pretreated corn fiber by recombinant bacteria. Biotechnol Lett 18:985–990

    Article  CAS  Google Scholar 

  • Nimcevic D, Gapes JR (2000) The acetone-butanol fermentation in pilot plant and pre-industrial scale. J Mol Microbiol Biotechnol 2:15–20

    CAS  PubMed  Google Scholar 

  • Nimcevic D, Puntigam R, Wörgetter M, Gapes JR (2000) Preparation of rapeseed oil esters of lower aliphatic alcohols. JAOCS 77:275–280

    Article  CAS  Google Scholar 

  • O’Sullivan CA, Burrell PC, Clarke WP, Blackall LL (2005) Structure of a cellulose degrading bacterial community during anaerobic digestion. Biotechnol Bioeng 92:871–878

    Article  PubMed  CAS  Google Scholar 

  • O’Connell D (2006) Industrial microbiology: ‘microdiesel’ to the rescue? Nat Rev Microbiol 4:723

    Article  CAS  Google Scholar 

  • Odling-Smee L (2007) Biofuels bandwagon hits a rut. Nature 446:483

    Article  PubMed  CAS  Google Scholar 

  • Ohta K, Beall DS, Mija JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environm Microbiol 57:893–900

    Article  CAS  Google Scholar 

  • Pesta G, Meyer-Pittroff R, Russ W (2006) Utilization of whey. In: Oreopoulou V, Russ W (eds) Utilization of byproducts and treatment of waste in the food industry. Springer, New York, pp 1–11, (1)

    Google Scholar 

  • RFA (2007) Renewable Fuels Association: Statistics. Washington DC, online 15.05.2007: http://www.ethanolrfa.org/industry/statistics/

  • Sanderson K (2006) A field in ferment. Nature 444:673–676

    Article  CAS  PubMed  Google Scholar 

  • Schwarz WH, Gapes JR (2006) Butanol—rediscovering a renewable fuel. BioWorld Europe 01-2006, pp 16–19

  • Schwarz WH, Gapes JR, Zverlov VV, Antoni D, Erhard W, Slattery M (2006) Personal communication and demonstration at the TU Muenchen (Campus Garching and Weihenstephan) in June 2006

  • Schwarz WH, Slattery M, Gapes JR (2007) The ABC of ABE. BioWorld Europe 02-2007, pp 8–10

  • Siso MIG (1996) The biotechnological utilization of cheese whey: a review. Bioresour Technol 57:1–11

    Article  Google Scholar 

  • Stern N (2006) The economics of climate change. The Stern Review. Cabinet Office – HM Treasury. Cambridge University Press http://www.hm-treasury.gov.uk/independent_reviews/stern_review_economics_climate_change/stern_review_report.cfm

  • Syutsubo K, Nagaya Y, Sakai S, Miya A (2005) Behavior of cellulose-degrading bacteria in thermophilic anaerobic digestion process. Water Sci Technol 52:79–84

    Article  CAS  PubMed  Google Scholar 

  • Tailliez P, Girard H, Millet J, Beguin P (1989) Enhanced cellulose fermentation by an asporogenous and ethanol-tolerant mutant of Clostridium thermocellum. Appl Environ Microbiol 55:207–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torney F, Noeller L, Scarpa A, Wang K (2007) Genetic engineering approaches to improve bioethanol production from maize. Curr Opin Biotechnol 18:1–7

    Article  CAS  Google Scholar 

  • Wang Q (2006) Biomethanol conversion from sugar beet pulp with pectin methyl esterase. Master thesis, University of Maryland, https://drum.umd.edu/dspace/bitstream/1903/3833/1/umi-umd-3678.pdf

  • Weuster-Botz D (1993) Continuous ethanol production by Zymomonas mobilis in a fluidized bed reactor. I: Kinetic studies of immobilization in macroporous glass beads. Appl Microbiol Biotechnol 39:679–684

    Article  CAS  Google Scholar 

  • Wu SY, Hung CH, Lin CN, Chen HW, Lee AS, Chang JS (2005) Fermentative hydrogen production and bacterial community structure in high-rate anaerobic bioreactors containing silicone-immobilized and self-flocculated sludge. Biotechnol Bioeng 93:934–946

    Article  CAS  Google Scholar 

  • Yadvika, Santosh S, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95:1–10

    Article  PubMed  CAS  Google Scholar 

  • Yusuf C (2007) Biodiesel from microalgae. Biotechnol Adv 3:294–306

    Google Scholar 

  • Zaborsky OR (1982) Chemicals from renewable resources: an endorsement for biotechnology. Enzyme Microbiol Technol 4:364–365

    Article  Google Scholar 

  • Zaldivar J, Nielsen J, Olsson L (2001) Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol 56:17–34

    Article  CAS  PubMed  Google Scholar 

  • Zeikus JG (1980) Chemical and fuel production by anaerobic bacteria. Annu Rev Microbiol 34:423–464

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Davis FC, Ingram LO (2001) Gene integration and expression and extracellular secretion of Erwinia chrysanthemi endoglucanase CelY (celY) and CelZ (celZ) in ethanologenic Klebsiella oxytoca P2. Appl Environ Microbiol 67:6–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank the German Research Foundation (DFG) and the German Agency of Renewable Resources (FNR) for support to WHS and VVZ. The advice and support of M. Slattery, J. R. Gapes, W. Hiegl, R. Igelspacher and A. Schwarz in preparing, reading and commenting on the text is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang H. Schwarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoni, D., Zverlov, V.V. & Schwarz, W.H. Biofuels from microbes. Appl Microbiol Biotechnol 77, 23–35 (2007). https://doi.org/10.1007/s00253-007-1163-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1163-x

Keywords

Navigation