Skip to main content
Log in

Application of biocathode in microbial fuel cells: cell performance and microbial community

  • Biotechnological Products and Process Engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Instead of the utilization of artificial redox mediators or other catalysts, a biocathode has been applied in a two-chamber microbial fuel cell in this study, and the cell performance and microbial community were analyzed. After a 2-month startup, the microorganisms of each compartment in microbial fuel cell were well developed, and the output of microbial fuel cell increased and became stable gradually, in terms of electricity generation. At 20 ml/min flow rate of the cathodic influent, the maximum power density reached 19.53 W/m3, while the corresponding current and cell voltage were 15.36 mA and 223 mV at an external resistor of 14.9 Ω, respectively. With the development of microorganisms in both compartments, the internal resistance decreased from initial 40.2 to 14.0 Ω, too. Microbial community analysis demonstrated that five major groups of the clones were categorized among those 26 clone types derived from the cathode microorganisms. Betaproteobacteria was the most abundant division with 50.0% (37 of 74) of the sequenced clones in the cathode compartment, followed by 21.6% (16 of 74) Bacteroidetes, 9.5% (7 of 74) Alphaproteobacteria, 8.1% (6 of 74) Chlorobi, 4.1% (3 of 74) Deltaproteobacteria, 4.1% (3 of 74) Actinobacteria, and 2.6% (2 of 74) Gammaproteobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An YJ, Joo YH, Hong IY, Ryu HW (2004) Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl Microbiol Biot 65:611–619

    CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    Article  CAS  PubMed  Google Scholar 

  • Barak Y, Tal Y, van Rijn J (1998) Light-mediated nitrite accumulation during denitrification by Pseudomonas sp. strain JR12. Appl Environ Microbiol 64:813–817

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical method: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Bergel A, Feron D, Mollica A (2005) Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem Commun 7:900–904

    CAS  Google Scholar 

  • Biffinger JC, Ray R, Little B, Ringeisen BR (2007) Diversifying biological fuel cell designs by use of nanoporous filters. Eviron Sci Technol 41:1444–1449

    CAS  Google Scholar 

  • Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69:1548–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045

    CAS  PubMed  Google Scholar 

  • Cheng S, Liu H, Logan BE (2006) Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells. Eviron Sci Technol 40:364–369

    CAS  Google Scholar 

  • Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007a) Biological denitrification in microbial fuel cells. Eviron Sci Technol 41:3354–3360

    CAS  Google Scholar 

  • Clauwaert P, Van der Ha D, Boon N, Verbeken K, Verhaege M, Rabaey K, Verstraete W (2007b) Open air biocathode enables effective electricity generation with microbial fuel cells. Eviron Sci Technol 41:7564–7569

    CAS  Google Scholar 

  • Du ZW, Li HR, Gu TY (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482

    CAS  PubMed  Google Scholar 

  • Dunstan RH, Kelley BC, Nicholas DJ (1982) Fixation of dinitrogen derived from denitrification of nitrate in a photosynthetic bacterium, Rhodopseudomonas sphaeroides forma sp. denitrificans. J Bacteriol 150:100–104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eisentraeger A, Klag P, Vansbotter B, Heymann E, Dott W (2001) Denitrification of groundwater with methane as sole hydrogen donor. Water Res 35(9):2261–2267

    CAS  PubMed  Google Scholar 

  • Elmore BO, Bergmann DJ, Klotz MG, Hooper AB (2007) Cytochromes P460 and c’-beta; a new family of high-spin cytochromes c. Febs Lett 581:911–916

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Keller J (2007) Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochimi Acta 53:598–603

    CAS  Google Scholar 

  • Gil GC, Chang IS, Kim BH, Kim M, Jang JK, Park HS, Kim HJ (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens Bioelectron 1:8:327–334

    CAS  PubMed  Google Scholar 

  • Gralnick JA, Newman DK (2007) Extracellular respiration. Mol Microbiol 65:1–11

    PubMed  PubMed Central  Google Scholar 

  • Grzebyk M, Pozniak G (2005) Microbial fuel cells (MFCs) with interpolymer cation exchange membranes. Sep Purif Technol 41:321–328

    CAS  Google Scholar 

  • He Z, Angenent LT (2006) Application of bacterial biocathodes in microbial fuel cells. Electronal 18:2009–2015

    CAS  Google Scholar 

  • Hedgecock LW, Costello RL (1962) Utilization of nitrate by pathogenic and saprophytic Mycobacteria. J Bacteriol 84:195–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heylen K, Vanparys B, Wittebolle L, Verstraete W, Boon N, De Vos P (2006) Cultivation of Denitrifying Bacteria: Optimization of Isolation Conditions and Diversity Study. Appl Environ Microbiol 72:2637–2643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen KS, Pauli ASL (1995) Polyphosphate accumulation among denitrifying bacteria in activated sludge. Anaerobe 1:161–168

    CAS  PubMed  Google Scholar 

  • Kargi F, Eker S (2007) Electricity generation with simultaneous wastewater treatment by a microbial fuel cell (MFC) with Cu and Cu-Au electrodes. J Chem Technol Biot 82:658–662

    CAS  Google Scholar 

  • Kim BH, Chang IS, Gadd GM (2007a) Challenges in microbial fuel cell development and operation. Appl Microbiol Biot 76:485–494

    CAS  Google Scholar 

  • Kim JR, Cheng S, Oh SE, Logan BE (2007b) Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells. Eviron Sci Technol 41:1004–1009

    CAS  Google Scholar 

  • Koenig A, Zhang T, Liu LH, Fang HHP (2005) Microbial community and biochemistry process in auto sulfurotrophic denitrifying biofilm. Chemosphere 58:1041–1047

    CAS  PubMed  Google Scholar 

  • Labbe N, Juteau P, Parent S, Villemur R (2003) Bacterial diversity in a marine methanol-fed denitrification reactor at the Montreal biodome, Canada. Microb Ecol 46:12–21

    CAS  PubMed  Google Scholar 

  • Lee HW, Lee SY, Lee JO, Kim HG, Park JB, Choi E, Park YK (2003) The microbial community analysis of a 5-stage BNR process with step feed system. Water Sci Technol 48:135–141

    CAS  PubMed  Google Scholar 

  • Liu H, Ramnarayanan R Logan BE (2004) Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Eviron Sci Technol 38:2281–2285

    CAS  Google Scholar 

  • Logan BE (2004) Extracting hydrogen electricity from renewable resources. Eviron Sci Technol 38:160A–167A

    CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Eviron Sci Technol 40:5181–5192

    CAS  Google Scholar 

  • Logan B, Cheng S, Watson V, Estadt G (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Eviron Sci Technol 41:3341–3346

    CAS  Google Scholar 

  • Ohta H, Hattori R, Ushiba Y, Mitsui H, Ito M, Watanabe H, Tonosaki A, Hattori T (2004) Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Micr 54:2185–2190

    CAS  Google Scholar 

  • Park HI, Mushtaq U, Perello D, Lee I, Cho SK, Star A, Yun M (2007) Effective and low-cost platinum electrodes for microbial fuel cells deposited by electron beam evaporation. Energ Fuel 21:2984–2990

    CAS  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298

    CAS  PubMed  Google Scholar 

  • Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005a) Tubular microbial fuel cells for efficient electricity generation. Eviron Sci Technol 39:8077–8082

    CAS  Google Scholar 

  • Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005b) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523

    CAS  PubMed  Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24(6):261–266

    CAS  PubMed  Google Scholar 

  • Rosenbaum M, Zhao F, Schroder U, Scholz F (2006) Interfacing electrocatalysis and biocatalysis with tungsten carbide: a high-performance, noble-metal-free microbial fuel cell. Angew Chen Int Edit 45:6658–6661

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Schroder U (2007) Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys Chem Chem Phys 9:2619–2629

    PubMed  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Micr 51:1405–1417

    CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    CAS  PubMed  Google Scholar 

  • Tan ZY, Reinhold-Hurek B (2003) Dechlorosoma suillum Achenbach et al. 2001 is a later subjective synonym of Azospira oryzae Reinhold-Hurek and Hurek 2000. Int J Syst Evol Micr 53:1139–1142

    CAS  Google Scholar 

  • Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR Lowy DA, Pilobello K, Fertig SJ, Lovely DR (2002) Harnessing microbially generated power on the seafloor. Nat Biotechnol 20:821–825

    CAS  PubMed  Google Scholar 

  • Terheijne A, Hamelers HVM, De Wilde V, Rozendal RA, Buisman CJN (2006) A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Eviron Sci Technol 40:5200–5205

    CAS  Google Scholar 

  • Yoshie S, Ogawa T, Makino H, Hirosawa H, Tsuneda S, Hirata A (2006) Characteristics of bacteria showing high denitrification activity in saline wastewater. Lett Appl Microbiol 42:277–283

    CAS  PubMed  Google Scholar 

  • Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410

    CAS  Google Scholar 

  • Zhao F, Harnisch F, Schrorder U, Scholz F, Bogdanoff P, Herrmann I (2006) Challenges and constraints of using oxygen cathodes in microbial fuel cells. Eviron Sci Technol 40:5193–5199

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. K. Rabaey, Dr. Z. Yuan and Dr. J. Keller (University of Queensland, Australia) for providing the MFC reactors and the helpful comments. This research was supported by the Second stage of Brain Korea 21 Project in 2007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Won Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, GW., Choi, SJ., Lee, TH. et al. Application of biocathode in microbial fuel cells: cell performance and microbial community. Appl Microbiol Biotechnol 79, 379–388 (2008). https://doi.org/10.1007/s00253-008-1451-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1451-0

Keywords

Navigation