Skip to main content
Log in

Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The identification of immunogenic polypeptides of pathogens is helpful for the development of diagnostic assays and therapeutic applications like vaccines. Routinely, these proteins are identified by two-dimensional polyacrylamide gel electrophoresis and Western blot using convalescent serum, followed by mass spectrometry. This technology, however, is limited, because low or differentially expressed proteins, e.g. dependent on pathogen–host interaction, cannot be identified. In this work, we developed and improved a M13 genomic phage display-based method for the selection of immunogenic polypeptides of Mycoplasma hyopneumoniae, a pathogen causing porcine enzootic pneumonia. The fragmented genome of M. hyopneumoniae was cloned into a phage display vector, and the genomic library was packaged using the helperphage Hyperphage to enrich open reading frames (ORFs). Afterwards, the phage display library was screened by panning using convalescent serum. The analysis of individual phage clones resulted in the identification of five genes encoding immunogenic proteins, only two of which had been previously identified and described as immunogenic. This M13 genomic phage display, directly combining ORF enrichment and the presentation of the corresponding polypeptide on the phage surface, complements proteome-based methods for the identification of immunogenic polypeptides and is particularly well suited for the use in mycoplasma species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams C, Pitzer J, Minion FC (2005) In vivo expression analysis of the P97 and P102 paralog families of Mycoplasma hyopneumoniae. Infect Immun 73:7784–7787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beghetto E, Gargano N, Ricci S, Garufi G, Peppoloni S, Montagnani F, Oggioni M, Pozzi G, Felici F (2006) Discovery of novel Streptococcus pneumoniae antigens by screening a whole-genome lambda-display library. FEMS Microbiol Lett 262:14–21

    CAS  PubMed  Google Scholar 

  • Breitling F, Dübel S, Seehaus T, Klewinghaus I, Little M (1991) A surface expression vector for antibody screening. Gene 104:147–153

    CAS  PubMed  Google Scholar 

  • Cochrane D, Webster C, Masih G, McCafferty J (2000) Identification of natural ligands for SH2 domains from a phage display cDNA library. J Mol Biol 297:89–97

    CAS  PubMed  Google Scholar 

  • Conceição FR, Moreira AN, Dellagostin OA (2006) A recombinant chimera composed of R1 repeat region of Mycoplasma hyopneumoniae P97 adhesin with Escherichia coli heat-labile enterotoxin B subunit elicits immune response in mice. Vaccine 24:5734–5743

    PubMed  Google Scholar 

  • Crameri R, Kodzius R, Konthur Z, Lehrach H, Blaser K, Walter G (2001) Tapping allergen repertoires by advanced cloning technologies. Int Arch Allergy Immunol 124:43–47

    CAS  PubMed  Google Scholar 

  • Delvecchio VG et al (2006) Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. Appl Environ Microbiol 72:6355–6363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eshaghi M, Tan WS, Yusoff K (2005) Identification of epitopes in the nucleocapsid protein of Nipah virus using a linear phage-displayed random peptide library. J Med Virol 75:147–152

    CAS  PubMed  Google Scholar 

  • Faix PH, Burg MA, Gonzales M, Ravey EP, Baird A, Larocca D (2004) Phage display of cDNA libraries: enrichment of cDNA expression using open reading frame selection. Biotechniques 36:1018–1022

    CAS  PubMed  Google Scholar 

  • Ferreira HB, De Castro LA (2007) A preliminary survey of M. hyopneumoniae virulence factors based on comparitive genomic analysis. Gen Mol Biol 30:245–255

    CAS  Google Scholar 

  • Futo S, Seto Y, Mitsuse S, Mori Y, Suzuki T, Kawai K (1995) Molecular cloning of a 46-kilodalton surface antigen (P46) gene from Mycoplasma hyopneumoniae: direct evidence of CGG codon usage for arginine. J Bacteriol 177:1915–1917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson DG et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    CAS  PubMed  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci USA 103:425–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith ME, Konigsberg WH (1977) Adsorption protein of the bacteriophage fd: isolation, molecular properties, and location in the virus. Biochemistry 16:2686–2694

    CAS  PubMed  Google Scholar 

  • Govarts C, Somers K, Hupperts R, Stinissen P, Somers V (2007) Exploring cDNA phage display for autoantibody profiling in the serum of multiple sclerosis patients: optimization of the selection procedure. Ann N Y Acad Sci 1109:372–384

    CAS  PubMed  Google Scholar 

  • Hertveldt K, Dechassa ML, Robben J, Volckaert G (2003) Identification of Gal80p-interacting proteins by Saccharomyces cerevisiae whole genome phage display. Gene 307:141–149

    CAS  PubMed  Google Scholar 

  • Hoelzle LE, Hoelzle K, Harder A, Ritzmann M, Aupperle H, Schoon H, Heinritzi K, Wittenbrink MM (2007) First identification and functional characterization of an immunogenic protein in unculturable haemotrophic Mycoplasmas (Mycoplasma suis HspA1). FEMS Immunol Med Microbiol 49:215–223

    CAS  PubMed  Google Scholar 

  • Hsu T, Minion FC (1998a) Identification of the cilium binding epitope of the Mycoplasma hyopneumoniae P97 adhesin. Infect Immun 66:4762–4766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu T, Minion FC (1998b) Molecular analysis of the P97 cilium adhesin operon of Mycoplasma hyopneumoniae. Gene 214:13–23

    CAS  PubMed  Google Scholar 

  • Hsu T, Artiushin S, Minion FC (1997) Cloning and functional analysis of the P97 swine cilium adhesin gene of Mycoplasma hyopneumoniae. J Bacteriol 179:1317–1323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huntley JF, Conley PG, Hagman KE, Norgard MV (2007) Characterization of Francisella tularensis outer membrane proteins. J Bacteriol 189:561–574

    CAS  PubMed  Google Scholar 

  • Hust M, Dübel S (2004) Mating antibody phage display with proteomics. Trends Biotechnol 22:8–14

    CAS  PubMed  Google Scholar 

  • Hust M, Meysing M, Schirrmann T, Selke M, Meens J, Gerlach G, Dübel S (2006) Enrichment of open reading frames presented on bacteriophage M13 using hyperphage. Biotechniques 41:335–342

    CAS  PubMed  Google Scholar 

  • Hust M, Dübel S, Schirrmann T (2007) Selection of recombinant antibodies from antibody gene libraries. Methods Mol Biol 408:243–255

    CAS  PubMed  Google Scholar 

  • Jacobsen ID, Meens J, Baltes N, Gerlach G (2005) Differential expression of non-cytoplasmic Actinobacillus pleuropneumoniae proteins induced by addition of bronchoalveolar lavage fluid. Vet Microbiol 109:245–256

    CAS  PubMed  Google Scholar 

  • Kim MF, Heidari MB, Stull SJ, McIntosh MA, Wise KS (1990) Identification and mapping of an immunogenic region of Mycoplasma hyopneumoniae p65 surface lipoprotein expressed in Escherichia coli from a cloned genomic fragment. Infect Immun 58:2637–2643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kodzius R, Rhyner C, Konthur Z, Buczek D, Lehrach H, Walter G, Crameri R (2003) Rapid identification of allergen-encoding cDNA clones by phage display and high-density arrays. Comb Chem High Throughput Screen 6:147–154

    CAS  PubMed  Google Scholar 

  • Konthur Z, Hust M, Dübel S (2005) Perspectives for systematic in vitro antibody generation. Gene 364:19–29

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Lartigue C, Glass JI, Alperovich N, Pieper R, Parmar PP, Hutchison CA, Smith HO, Venter JC (2007) Genome transplantation in bacteria: changing one species to another. Science 317:632–638

    CAS  PubMed  Google Scholar 

  • Maas A, Meens J, Baltes N, Hennig-Pauka I, Gerlach G (2006) Development of a DIVA subunit vaccine against Actinobacillus pleuropneumoniae infection. Vaccine 24:7226–7237

    CAS  PubMed  Google Scholar 

  • Madsen ML, Puttamreddy S, Thacker EL, Carruthers MD, Minion FC (2008) Transcriptome changes in Mycoplasma hyopneumoniae during infection. Infect Immun 76:658–663

    CAS  PubMed  Google Scholar 

  • Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348:552–554

    CAS  PubMed  Google Scholar 

  • Meens J, Selke M, Gerlach G (2006) Identification and immunological characterization of conserved Mycoplasma hyopneumoniae lipoproteins Mhp378 and Mhp651. Vet Microbiol 116:85–95

    CAS  PubMed  Google Scholar 

  • Minion FC, Adams C, Hsu T (2000) R1 region of P97 mediates adherence of Mycoplasma hyopneumoniae to swine cilia. Infect Immun 68:3056–3060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minion FC, Lefkowitz EJ, Madsen ML, Cleary BJ, Swartzell SM, Mahairas GG (2004) The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol 186:7123–7133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson M, Bjerketorp J, Wiebensjö A, Ljungh A, Frykberg L, Guss B (2004) A von Willebrand factor-binding protein from Staphylococcus lugdunensis. FEMS Microbiol Lett 234:155–161

    CAS  PubMed  Google Scholar 

  • Paschke M, Höhne W (2005) A twin-arginine translocation (Tat)-mediated phage display system. Gene 350:79–88

    CAS  PubMed  Google Scholar 

  • Rhyner C, Weichel M, Flückiger S, Hemmann S, Kleber-Janke T, Crameri R (2004) Cloning allergens via phage display. Methods 32:212–218

    CAS  PubMed  Google Scholar 

  • Rondot S, Koch J, Breitling F, Dübel S (2001) A helper phage to improve single-chain antibody presentation in phage display. Nat Biotechnol 19:75–78

    CAS  PubMed  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sellman BR, Howell AP, Kelly-Boyd C, Baker SM (2005) Identification of immunogenic and serum binding proteins of Staphylococcus epidermidis. Infect Immun 73:6591–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sidhu SS, Koide S (2007) Phage display for engineering and analyzing protein interaction interfaces. Curr Opin Struct Biol 17:481–487

    CAS  PubMed  Google Scholar 

  • Sirand-Pugnet P, Citti C, Barré A, Blanchard A (2007a) Evolution of mollicutes: down a bumpy road with twists and turns. Res Microbiol 158:754–766

    CAS  PubMed  Google Scholar 

  • Sirand-Pugnet P et al (2007b) Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 3:e75

    PubMed  PubMed Central  Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1317

    CAS  PubMed  Google Scholar 

  • Soltes G, Hust M, Ng KKY, Bansal A, Field J, Stewart DIH, Dübel S, Cha S, Wiersma EJ (2007) On the influence of vector design on antibody phage display. J Biotechnol 127:626–637

    CAS  PubMed  Google Scholar 

  • Strasser M, Frey J, Bestetti G, Kobisch M, Nicolet J (1991) Cloning and expression of a species-specific early immunogenic 36-kilodalton protein of Mycoplasma hyopneumoniae in Escherichia coli. Infect Immun 59:1217–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taussig MJ et al (2007) ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat Methods 4:13–17

    CAS  PubMed  Google Scholar 

  • Valent QA (2001) Signal recognition particle mediated protein targeting in Escherichia coli. Antonie Van Leeuwenhoek 79:17–31

    CAS  PubMed  Google Scholar 

  • Vasconcelos ATR et al (2005) Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol 187:5568–5577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang E, Shim JS, Woo H, Kim K, Kwon HJ (2007) Aminopeptidase N/CD13 induces angiogenesis through interaction with a pro-angiogenic protein, galectin-3. Biochem Biophys Res Commun 363:336–341

    CAS  PubMed  Google Scholar 

  • Zacchi P, Sblattero D, Florian F, Marzari R, Bradbury ARM (2003) Selecting open reading frames from DNA. Genome Res 13:980–990

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Stefan Dübel for corrections and discussion on the manuscript and Saskia Helmsing for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kügler, J., Nieswandt, S., Gerlach, G.F. et al. Identification of immunogenic polypeptides from a Mycoplasma hyopneumoniae genome library by phage display. Appl Microbiol Biotechnol 80, 447–458 (2008). https://doi.org/10.1007/s00253-008-1576-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1576-1

Keywords

Navigation