Skip to main content
Log in

Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Proteomic analysis was performed to determine and differentiate the composition of the secretomes of Phanerochaete chrysosporium CIRM-BRFM41, a peroxidase hypersecretory strain grown under ligninolytic conditions and on softwood chips under biopulping conditions. Extracellular proteins from both cultures were analyzed by bidimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. A total of 37 spots were identified. The secretome in liquid synthetic medium comprised mainly peroxidases, while several wood-degrading enzymes and enzymes involved in fungal metabolism were detected in biopulping cultures on softwood. This prompted an analysis of the impact of secretome modulation in the presence of softwood chips. Biotreated wood was submitted to kraft cooking and chemical bleaching using chlorine dioxide. The fungal pre-treatment led to a significant increase in pulp yield and a better bleachability of the pulp. This bleachability improvement could be explained by the production of specific lignocellulose-degrading enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbas A, Koc H, Liu F, Tien M (2005) Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr Genet 47:49–56

    CAS  PubMed  Google Scholar 

  • Akhtar M, Blanchette RA, Kirk TK (1997) Fungal delignification and biomechanical pulping of wood. In: Scheper T (ed) Advances in biochemical engineering/biotechnology. Springer, Berlin, pp 159–195

    Google Scholar 

  • Akhtar M, Blanchette RA, Myers G, Kirk TK (1998) An overview of biomechanical pulping research. In: Akhtar M, Young RA (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 309–340

    Google Scholar 

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  CAS  PubMed  Google Scholar 

  • Atik C, Imamoglu S, Bermek H (2006) Impact of xylanase pre-treatment on peroxide bleaching stage of biokraft pulp. Int Biodeterior Biodegrad 58:22–26

    Article  CAS  Google Scholar 

  • Baldwin MA (2004) Protein identification by mass spectrometry: issues to be considered. Mol Cell Proteomics 3:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bonnarme P, Asther M, Asther Ma (1993) Influence of primary and secondary proteases produced by free and immobilized cells of the white-rot fungus Phanerochaete chrysosporium on lignin peroxidase activity. J Biotechnol 30:271–282

    Article  CAS  Google Scholar 

  • Breves R, Bronnenmeier K, Wild N, Lottspeich F, Staudenbauer WL, Hofemeister J (1997) Genes encoding two different β-glucosidases of Thermoanaerobacter brockii are clustered in a common operon. Appl Environ Microbiol 63:3902–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brumer 3rd H, Sims PF, Sinnott ML (1999) Lignocellulose degradation by Phanerochaete chrysosporium: purification and characterization of the main α-galactosidase. Biochem J 339:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarero S, Galletti GC, Martinez AT (1994) Preferential degradation of phenolic lignin units by two white rot fungi. Appl Environ Microbiol 60:4509–4516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camarero S, Galletti GC, Martínez AT (1997) Demonstration of in situ oxidative degradation of lignin side chains by two white-rot fungi using analytical pyrolysis of methylated wheat straw. Rapid Commun Mass Spectrom 11:331–334

    Article  CAS  Google Scholar 

  • Castanares A, Hay AJ, Gordon AH, McCrae SI, Wood TM (1995) D-Xylan-degrading enzyme system from the fungus Phanerochaete chrysosporium: isolation and partial characterisation of an α-(4-O-methyl)-d-glucuronidase. J Biotechnol 43:183–194

    Article  CAS  PubMed  Google Scholar 

  • Charmont S, Jamet E, Pont-Lezica R, Canut H (2005) Proteomic analysis of secreted proteins from Arabidopsis thaliana seedlings: improved recovery following removal of phenolic compounds. Phytochemistry 66:453–461

    Article  CAS  PubMed  Google Scholar 

  • Cullen D, Kersten PJ (2004) Enzymology and molecular biology of lignin degradation. In: Brambl R, Marzulf GA (eds) The mycota III. Biochemistry and molecular biology. Springer, Berlin, pp 249–273

    Chapter  Google Scholar 

  • da Silva Perez D, Moreau J, Nougier P, Themelin A, Chantre G (2004) Effect of storage conditions on the wood and pulp quality of windthrow trees. Proceedings of the 8th European Workshop on Lignocellulosics and Pulps, Latvian State Institute of Wood Chemistry, Riga, Latvia, August 22–25, 2004, pp 295–298

  • Dence CW (1992) The determination of lignin. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer, Berlin, pp 33–61

    Chapter  Google Scholar 

  • Dobozi MS, Szakacs G, Bruschi CV (1992) Xylanase activity of Phanerochaete chrysosporium. Appl Environ Microbiol 58:3466–3471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskell J, Stewart P, Kersten PJ, Covert SF, Reiser J, Cullen D (1994) Establishment of genetic linkage by allele-specific polymerase chain reaction: application to the lignin peroxidase gene family of Phanerochaete chrysosporium. Biotechnology 12:1372–1375

    CAS  PubMed  Google Scholar 

  • Gharahdaghi F, Weinberg CR, Meagher DA, Imai BS, Mische SM (1999) Mass spectrometric identification of proteins from silver-stained polyacrylamide gel: a method for the removal of silver ions to enhance sensitivity. Electrophoresis 20:601–605

    Article  CAS  PubMed  Google Scholar 

  • Gold MH, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino-acid sequence similarities. Biochem J 280:309–316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herpoël I, Asther M, Sigoillot JC (1999) Design and scale up of a process for manganese peroxidase production using the hypersecretory strain Phanerochaete chrysosporium I-1512. Biotechnol Bioeng 65:468–473

    Article  PubMed  Google Scholar 

  • Igarashi K, Tani T, Rie K, Masahiro S (2003) Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-β-glucosidase. J Biosci Bioeng 95:572–576

    Article  CAS  PubMed  Google Scholar 

  • Ishida T, Yaoi K, Hiyoshi A, Igarashi K, Samejima M (2007) Substrate recognition by glycoside hydrolase family 74 xyloglucanase from the basidiomycete Phanerochaete chrysosporium. FEBS J 274:5727–5736

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Hashimoto W, Mikami B, Murata K (2006) Substrate recognition by unsaturated glucuronyl hydrolase from Bacillus sp. GL1. Biochem Biophys Res Comm 344:253–262

    Article  CAS  PubMed  Google Scholar 

  • Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF (1997) Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol Lett 154:165–171

    Article  CAS  PubMed  Google Scholar 

  • Kang KY, Jo BM, Oh JS, Mansfield SD (2003) Biopulping of hybrid poplar improves chemical and energy savings during kraft pulping. Wood Fiber Sci 35:594–600

    CAS  Google Scholar 

  • Kansoh AL, Nagieb ZA (2004) Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie Van Leeuwenhoek 85:103–114

    Article  CAS  PubMed  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium: its characterization and activation by lignin peroxidase. Proc Natl Acad Sci U S A 87:2936–2940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169:2195–2201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    Article  CAS  PubMed  Google Scholar 

  • Kirk TK, Cullen D (1998) Enzymology and molecular genetics of wood degradation by white-rot fungi. In: Young RA, Masood A (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 273–307

    Google Scholar 

  • Lapierre C, Rolando C (1988) Thioacidolysis of pre-methylated lignin samples from pine compression and poplar woods. Holzforschung 42:1–4

    Article  CAS  Google Scholar 

  • Larrondo L, Vicuna R, Cullen D (2005) Phanerochaete chrysosporium genomics. In: Arora Berka DKR (ed) Applied mycology and biotechnology. Elsevier, Amsterdam, pp 315–352

    Google Scholar 

  • Laugero C, Sigoillot JC, Moukha S, Frasse P, Bellon-Fontaine M-N, Bonnarme P, Mougin C, Asther M (1996) Selective hyperproduction of manganese peroxidases by Phanerochaete chrysosporium I-1512 immobilized on nylon net in a bubble column reactor. Appl Microbiol Biotechnol 44:717–723

    CAS  Google Scholar 

  • Li B, Renganathan V (1998) Gene cloning and characterization of a novel cellulose-binding β-glucosidase from Phanerochaete chrysosporium. Appl Environ Microbiol 64:2748–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai V, Wiegel J, Lorenz WW (2000) Cloning, sequencing, and characterization of the bifunctional xylosidase-arabinosidase from the anaerobic thermophile Thermoanaerobacter ethanolicus. Gene 247:137–143

    Article  CAS  PubMed  Google Scholar 

  • Maras M, Callewaert N, Piens K, Claeyssens M, Martinet W, Dewaele S, Contreras H, Dewerte I, Penttila M, Contreras R (2000) Molecular cloning and enzymatic characterization of a Trichoderma reesei 1,2-α-d-mannosidase. J Biotechnol 77:255–263

    Article  CAS  PubMed  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    Article  CAS  PubMed  Google Scholar 

  • Maruyama Y, Nakajima T, Ichishima E (1994) A 1,2-α-d-mannosidase from a Bacillus sp.: purification, characterization, and mode of action. Carbohydr Res 251:89–98

    Article  CAS  PubMed  Google Scholar 

  • Muñoz IG, Ubhayasekera W, Henriksson H, Szabó I, Pettersson G, Johansson G, Mowbray SL, Ståhlberg J (2001) Family 7 cellobiohydrolases from Phanerochaete chrysosporium: crystal structure of the catalytic module of Cel7D (CBH58) at 1.32 Å resolution and homology models of the isozymes. J Mol Biol 314:1097–1111

    Article  PubMed  CAS  Google Scholar 

  • Myette JR, Shriver Z, Kiziltepe T, McLean MW, Venkataraman G, Sasisekharan R (2002) Molecular cloning of the heparin/heparan sulfate delta 4,5 unsaturated glycuronidase from Flavobacterium heparinum, its recombinant expression in Escherichia coli, and biochemical determination of its unique substrate specificity. Biochemistry 41:7424–7434

    Article  CAS  PubMed  Google Scholar 

  • Nankai H, Hashimoto W, Miki H, Kawai S, Murata K (1999) Microbial system for polysaccharide depolymerization: enzymatic route for xanthan depolymerization by Bacillus sp. strain GL1. Appl Environ Microbiol 65:2520–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrou JL, Jules M, Beltran G, François J (2005) Acid trehalase in yeasts and filamentous fungi: localization, regulation and physiological function. FEMS Yeast Res 5:503–511

    Article  CAS  PubMed  Google Scholar 

  • Paszczynski A, Huynh VB, Crawford R (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750–765

    Article  CAS  PubMed  Google Scholar 

  • Puchart V, Katapodis P, Biely P, Kremnicky L, Christakopoulos P, Vrsanska M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 24:355–361

    Article  CAS  Google Scholar 

  • Rabilloud T, Carpentier G, Tarroux P (1988) Improvement and simplification of low-background silver staining of proteins by using sodium dithionite. Electrophoresis 9:288–291

    Article  CAS  PubMed  Google Scholar 

  • Reid ID (1998) Fate of residual lignin during delignification of kraft pulp by Trametes versicolor. Appl Environ Microbiol 64:2117–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sachslehner A, Nidetzky B, Kulbe KD, Haltrich D (1998) Induction of mannanase, xylanase, and endoglucanase activities in Sclerotium rolfsii. Appl Environ Microbiol 64:594–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Liu F, Koc H, Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153:3023–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometry sequencing of proteins from silver-stained polyacrylamide gels. Anal Chem 68:850–858

    Article  CAS  PubMed  Google Scholar 

  • Stals I, Sandra K, Geysens S, Contreras R, Van Beeumen J, Claeyssens M (2004) Factors influencing glycosylation of Trichoderma reesei cellulases. I: Post-secretorial changes of the O- and N-glycosylation pattern of Cel7A. Glycobiology 14:713–724

    Article  CAS  PubMed  Google Scholar 

  • Stewart P, Cullen D (1999) Organization and differential regulation of a cluster of lignin peroxidase genes of Phanerochaete chrysosporium. J Bacteriol 181:3427–3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toshiaki U, Higuchi T (1989) Cleavages of aromatic ring and β-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett 242:325–329

    Article  Google Scholar 

  • Uzcategui E, Ruiz A, Montesino R, Johansson G, Pettersson G (1991) The 1,4-β-d-glucan cellobiohydrolases from Phanerochaete chrysosporium. I. A system of synergistically acting enzymes homologous to Trichoderma reesei. J Biotechnol 19:271–285

    Article  CAS  PubMed  Google Scholar 

  • Vanden Wymelenberg A, Covert S, Cullen D (1993) Identification of the gene encoding the major cellobiohydrolase of the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 59:3492–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanden Wymelenberg A, Sabat, G, Martinez, D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D (2005) The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118:17–34

    Article  CAS  Google Scholar 

  • Vanden Wymelenberg A, Minges P, Sabat G, Martinez D, Aerts A, Salamov A, Grigoriev I, Shapiro H, Putnam N, Belinky P, Dosoretz C, Gaskell J, Kersten P, Cullen D (2006a) Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet Biol 43:343–356

    Article  CAS  PubMed  Google Scholar 

  • Vanden Wymelenberg A, Sabat G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA (2006b) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wattenberg A, Organ AJ, Schneider K, Tyldesley R, Bordoli R, Bateman RH (2002) Sequence dependent fragmentation of peptides generated by MALDI quadrupole time-of-flight (MALDI Q-TOF) mass spectrometry and its implications for protein identification. J Am Soc Mass Spectrom 13:772–783

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Inoue T, Ichishima E (1993) 1,2-α-d-Mannosidase from Penicillium citrinum: molecular and enzymic properties of two isoenzymes. Biochem J 290:349–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the French National Research Agency Program PNRB as part of the Stratégie de Prétraitements Physiques, Enzymatiques et Chimiques Appliquées à la Biomasse-Bio-Ethanol (SPECABBE) project. The authors thank F. Legée and L. Cézard for the lignin analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holy Ravalason.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravalason, H., Jan, G., Mollé, D. et al. Secretome analysis of Phanerochaete chrysosporium strain CIRM-BRFM41 grown on softwood. Appl Microbiol Biotechnol 80, 719–733 (2008). https://doi.org/10.1007/s00253-008-1596-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1596-x

Keywords

Navigation