Skip to main content

Advertisement

Log in

The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Investigating optimal conditions for lignin-degrading peroxidases production by Phanerochaete chrysosporium (P. chrysosporium) has been a topic for numerous researches. The capability of P. chrysosporium for producing lignin peroxidases (LiPs) and manganese peroxidases (MnPs) makes it a model organism of lignin-degrading enzymes production. Focusing on compiling and identifying the factors that affect LiP and MnP production by P. chrysosporium, this critical review summarized the main findings of about 200 related research articles. The major difficulty in using this organism for enzyme production is the instability of its productivity. This is largely due to the poor understanding of the regulatory mechanisms of P. chrysosporium responding to different nutrient sources in the culture medium, such as metal elements, detergents, lignin materials, etc. In addition to presenting the major conclusions and gaps of the current knowledge on lignin-degrading peroxidases production by P. chrysosporium, this review has also suggested further work, such as correlating the overexpression of the intra and extracellular proteins to the nutrients and other culture conditions to discover the regulatory cascade in the lignin-degrading peroxidases production process, which may contribute to the creation of improved P. chrysosporium strains leading to stable enzyme production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler E (1977) Lignin chemistry—past, present and future. Wood Sci Technol 11:169–218

    CAS  Google Scholar 

  • Aifa MS, Sayadi S, Gargouri A (1999) Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Aspergillus niger. Biotechnol Lett 21:849–853

    CAS  Google Scholar 

  • Akhtar M, Attridge MC, Blanchette RA, Myers GC, Wall MB, Sykes MS, Koning JW Jr, Burgess RR, Wegner TH, Kirk TK (1992) The white-rot fungus Ceriporiopsis subvermispora saves electrical energy and improves strength properties during biomechanical pulping of wood. In: Kuwahara M, Shimada M (eds) Biotechnology in pulp and paper industry. UNi, Tokyo, Japan, pp 3–8

    Google Scholar 

  • Akhtar M, Scott GM, Swaney RE, Kirk TK (1998) Overview of biomechanical and biochemical pulping research. In: Eriksson KL, Cavaco-Paulo A (eds) Enzyme applications in fiber processing. ACS Symposium Series 687, American Chemical Society, p 15–26

  • Alic M, Kornegay JR, Pribnow D, Gold MH (1989) Transformation by complementation of an adenine auxotroph of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 55:406–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alic M, Clark EK, Kornegay JR, Gold MH (1990) Transformation of Phanerochaete chrysosporium and Neurospora crassa with adenine biosynthetic genes from Schizophyllum commune. Curr Genet 17:305–311

    CAS  Google Scholar 

  • Archibald FS, Fridovich I (1981) Manganese, superoxide dismutase and oxygen tolerance in some lactic acid bacteria. J Bacteriol 146:928–936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Archibald FS, Fridovich I (1982) The scavenging of superoxide radical by manganous complexes: in vitro. Arch Biochem Biophys 214:452–463

    CAS  PubMed  Google Scholar 

  • Arora DS, Gill PK (2001) Comparison of two assay procedures for lignin peroxidase. Enz Microbial Technol 28:602–605

    CAS  Google Scholar 

  • Asgher M, Asad MJ, Legge RL (2006) Enhanced lignin peroxidase synthesis by Phanerochaete chrysosporium in solid state bioprocessing of a lignocellulosic substrate. World J Microbiol Biotechnol 22:449–453

    CAS  Google Scholar 

  • Asther M, Corrieu G, Drapron R, Odier E (1987) Effect of Tween 80 and oleic acid on ligninase production by Phanerochaete chrysosporium INA-12. Enz Microbial Technol 9:245–249

    CAS  Google Scholar 

  • Böckle B, Martínez MJ, Guillén F, Martínez AT (1999) Mechanism of peroxidase inactivation in liquid cultures of the ligninolytic fungus pleurotus pulmonarius. Appl Environ Microbiol 65:923–928

    PubMed  PubMed Central  Google Scholar 

  • Bonnarme P, Jeffries TW (1990) Mn(II) Regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Appl Environ Microbiol 56:210–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnarme P, Delattre M, Corrieu G, Asther M (1991) Peroxidase secretion by pellets or immobilized cells of Phanerochaete chrysosporium BKM-F-1767 and INA-12 in relation to organ-elle content. Enz Microbial Technol 13:727–733

    CAS  Google Scholar 

  • Bono JJ, Goulas P, Boe JF, Portet N, Seris JL (1990) Effect of Mn(II) on reactions catalyzed by lignin peroxidase from Phanerochaete chrysosporium. Eur J Biochem 192:189–193

    CAS  PubMed  Google Scholar 

  • Bos CJ (1986) Induced mutation and somatic recombination as tools for genetic analysis and wbreeding of imperfect fungi. Ph D thesis. Wageningen Agricultural University, Wageningen, The Netherlands, p 156

  • Brown J, Glenn JK, Gold MH (1990) Manganese regulates expression of manganese peroxidase by Phanerochaete chrysosporium. J Bacteriol 172:3125–3130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brunow G (1998) Oxidative coupling of phenols and the biosynthesis of lignin. In: Lewis NG, Sarkanen S (eds) Lignin and lignan biosynthesis. American Chemical Society, Washington, DC, pp 131–147

    Google Scholar 

  • Burdsall HH (1985) A contribution to the taxonomy of the genus phanerochaete. Mycologia Memoir 10:61–63

    Google Scholar 

  • Burdsall HH Jr (1998) Taxonomy of industrially important white-rot fungi. In: Young RA, Akhtar M (eds) Environmentally friendly technologies for the pulp and paper industry. Wiley, New York, pp 259–272 1998 ISBN:0-471-15770-8

    Google Scholar 

  • Burdsall HH, Eslyn WE (1974) A new Phanerochaete with a chrysosporium imperfect state. Mycotaxon 1:123–133

    Google Scholar 

  • Buswell JA, Mollet B, Odier E (1984) Ligninolytic enzyme production by Phanerochaete chrysosporium under conditions of nitrogen sufficiency. FEMS Microbiol Lett 25:295–299

    CAS  Google Scholar 

  • Cameron MD, Timofeevski S, Aust SD (2000) Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl Microbiol Biotechnol 54:751–758

    CAS  PubMed  Google Scholar 

  • Cancel AM, Orth AB, Tien M (1993) Lignin and veratryl alcohol are not inducers of the ligninolytic system of Phanerochaete chrysosporium. Appl Environ Microbiol 59:2909–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capdevila C, Corrieu G, Asther M (1989) A feed-harvest culturing method to improve lignin peroxidase production by Phanerochaete chrysosporium INA-12 immobilized on polyurethane foam. J Ferment Bioengng 68:60–63

    CAS  Google Scholar 

  • CapdevilaC, Moukha S, Ghyczy M, Theilleus J, Gelie B, Delattre M, Corrieu G, Asther M (1990) Characterization of peroxidase secretion and subcellular organization of Phanerochaete chrysosporium INA-12 in the presence of various soybean phospholipid fractions. Appl Environ Microbiol 56:3811–3816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caporale C, Garzillo AMV, Caruso C, Buonocore V (1996) Characterization of extracellular proteases from Trametes trogii. Phytochemistry 41:385–393

    CAS  PubMed  Google Scholar 

  • Cereghino JL, Cregg JM (2000) Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev 24:45–66

    CAS  PubMed  Google Scholar 

  • Chen CI, Chang HM (1985) Chemistry of lignin biodegradation. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic, New York, pp 535–556

    Google Scholar 

  • Chen AHC, Dosoretz CG, Grethlein HE (1991) Ligninase production by immobilized cultures of Phanerochaete chrysosporium growth under nitrogen-sufficient conditions. Enz Microbial Technol 13:404–407

    CAS  Google Scholar 

  • Choinowski T (1996) Crystal structure analysis of lignin peroxidase isozymes from Phanerochaete chrysosporium to high resolution, A comparative study of structural properties to other peroxidases, ETH, Zürich, Switzerland, PhD thesis, no. 11859

  • Christov LP, Akhtar M, Prior BA (1996) Biotechnology in the pulp and paper industry: recent advances in applied and fundamental research. Biobleaching in dissolving pulp production. In: Srebotnik E, Messner K (eds) Proceedings of the 6th international conference on biotechnology in the pulp and paper industry. WUV-Universitätsverlag, Austria, pp 625–628 ISBN:3-85076-405-2

    Google Scholar 

  • Cleland JL, Jones AJ (1996) Stable formulations of recombinant human growth hormone and interferon-gamma for microencapsulation in biodegradable microspheres. Pharm Res 13:1464–1475

    CAS  PubMed  Google Scholar 

  • Conesa A, van den Hondel CAMJJ, Punt PJ (2000) Studies on the production of fungal peroxidases in Aspergillus niger. Appl Environ Microbiol 66:3016–3023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cornwell KL, Tinland-Butez MF, Tardone PJ, Cabasso I, Hammel KE (1990) Lignin degradation and lignin peroxidase production in cultures of Phanerochaete chrysosporium immobilized on porous ceramic supports. Enz Microbial Technol 12:916–920

    CAS  Google Scholar 

  • Couto SR, Sanromàn A (2005) Application of solid state fermentation to lignolytic enzyme production. Biochemical Engineering Journal 22:211–219

    Google Scholar 

  • Couto SR, Domìnguez A, Sanromàn A (2001) Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of Phanerochaete chrysosporium. Biodegradation 12:283–289

    CAS  Google Scholar 

  • Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New York, p 154

    Google Scholar 

  • Cruz JM, Domínguez JM, Domínguez H, Parajo JC (2000) Preparation of fermentation media from agricultural wastes and their bioconversion into xylitol. Food Biotechnol 14:79–97

    CAS  Google Scholar 

  • Cuervo AM, Dice JF (1998) Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med 76:6–12

    CAS  PubMed  Google Scholar 

  • Dass SB, Dosoretz CG, Reddy CA, Grethlein HE (1995) Extracellular proteases produced by the wood-degrading fungus Phanerochaete chrysosporium under ligninolytic and nonligninolytic conditions. Arch Microbiol 163:254–258

    CAS  PubMed  Google Scholar 

  • Datta A (1992) Purification and characterization of a novel protease from solid substrate cultures of Phanerochaete chrysosporium. J Biol Chem 267:728–736

    CAS  PubMed  Google Scholar 

  • de Koker TH, Nakasone KK, Haarhof J, Burdsall HH Jr, Janse BJ (2003) Phylogenetic relationships of the genus Phanerochaete inferred from the internal transcribed spacer region. Mycol Res 107:1032–1040

    PubMed  Google Scholar 

  • de Koker TH, Mozuch MD, Cullen D, Gaskell J, Kersten PJ (2004) Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation. Appl Environ Microbiol 70:5794–5800

    PubMed  PubMed Central  Google Scholar 

  • Dehorter B, Blondeau R (1992) Extracellular enzyme activities during humic acid degradation by the white-rot fungi Phanerochaete chrysosporium and Trametes versicolor. FEMS Microbiol Lett 94:209–215

    CAS  Google Scholar 

  • Department of Energy (2006) Breaking the biological barriers to cellulosic ethanol—a joint research agenda. Office of Sciences, Department of Energy. DOE/SC-0095

  • Doddapaneni H, Yadav JS (2005) Microarray-based global differential expression profiling of p450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus Phanerochaete chrysosporium. Mol Genet Genomics 274:454–466

    CAS  PubMed  Google Scholar 

  • Dosoretz C, Dass B, Reddy CA, Grethlein H (1990a) Protease-mediated degradation of lignin peroxidase in liquid cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:3429–3434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dosoretz CD, Chen HC, Grethlein HE (1990b) Effect of environmental conditions on extracellular protease activity in lignolytic cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 56:395–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle W, Smith AT (1996) Expression of lignin peroxidase H8 in Escherichia coli: folding and activation of the recombinant enzyme with Ca2+ and haem. Biochem J 315:15–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dresler-Nurmi A, Kaijalainen S, Lindström K, Hatakka A (1999) Grouping of lignin degrading corticioid fungi based on RFLP analysis of 18S rDNA and ITS regions. Mycol Res 103:990–996

    CAS  Google Scholar 

  • Eriksson KE, Pettersson B (1982) Purification and partial characterization of two acidic proteases from the white-rot fungus Sporotrichum pulverulentum. Eur J Biochem 124:635–642

    CAS  PubMed  Google Scholar 

  • Eriksson KE, Pettersson B (1988) Acid proteases from Sporotrichum pulverulentum. Methods Enzymol 160A:500–508

    Google Scholar 

  • Faison BD, Kirk TK (1985) Factors involved in the regulation of a ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 49:299–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faison BD, Kirk TK, Farrell RL (1986) Role of veratryl alcohol in regulating ligninase activity in Phanerochaete chrysosporium. Appl Environ Microbiol 52:251–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faix O, Mozuch MD, Kirk TK (1985) Degradation of gymnosperm (guaiacyl) vs. angiosperm (syringyl/guaiacyl) lignins by Phanerochaete chrysosporium. Holzforschung 39:203–208

    CAS  Google Scholar 

  • Farrell RL, Murtagh KE, Tien M, Mozuch MD, Kirk TK (1989) Physical and enzymatic properties of lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Enz Microbial Technol 11:322–328

    CAS  Google Scholar 

  • Feijoo G, Rothschild N, Dosoretz C, Lema JM (1995) Effect of addition of extracellular culture fluid on ligninolytic enzyme formation in Phanerochaete chrysosporium. J Biotechnol 40:21–29

    CAS  Google Scholar 

  • Fenn P, Kirk TK (1981) Relationship of nitrogen to the onset and suppression of lignolytic activity and secondary metabolism in Phanerochaete chrysosporium. Arch Microbiol 130:59–65

    CAS  Google Scholar 

  • Fenn P, Choi S, Kirk TK (1981) Ligninolytic activity of Phanerochaete chrysosporium: physiology of suppression by NH4+ and l-glutamate. Arch Microbiol 130:66–71

    CAS  Google Scholar 

  • Fujian X, Hongzhang C, Zuohu L (2001) Solid-state production of lignin peroxidase (LiP) and manganese peroxidase (MnP) by Phanerochaete chrysosporium using steam-exploded straw as substrate. Bioresour Technol 80:149–151

    CAS  PubMed  Google Scholar 

  • Galkin S, Vares T, Kalsi M, Hatakka A (1998) Production of organic acids by different white-rot fungi as detected using capillary zone electrophoresis. Biotechnol Techniq 12:267–271

    CAS  Google Scholar 

  • Gelpke MDS, Gambill MM, Cereghino GPL, Gold MH (1999) Homologous expression of recombinant lignin peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 65:1670–1674

    Google Scholar 

  • George P, Kvaratskhelia M, Dilworth MJ, Thorneley RNF (1999) Reversible alkaline inactivation of lignin peroxidase involves the release of both the distal and proximal site calcium ions and bishistidine co-ordination of the haem. Biochem J 344:237–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glenn JK, Akileswaran L, Gold MH (1986) Mn(II) oxidation is the principal function of the extracellular Mn-peroxidase from Phanerochaete chrysosporium. Arch Biochem Biophys 251:688–696

    CAS  PubMed  Google Scholar 

  • Godfrey BJ, Mayfield MB, Brown JA, Gold MH (1990) Characterization of a gene encoding a manganese peroxidase from Phanerochaete chrysosporium. Gene 93:119–124

    CAS  PubMed  Google Scholar 

  • Gold MH, Wariishi H, Valli K (1989) Extracellular peroxidases involved in lignin degradation by Phanerochaete chrysosporium. In: Whitaker JR, Sonnet PF (eds) Biocatalysis in agricultural biotechnology, ACS Symposium Series 389. American Chemical Society, Washington, pp 127–140

    Google Scholar 

  • Grgic˘ I, Perdih A (2003) Stimulation of ligninolytic enzyme production in Phanerochaete chrysosporium by polyoxyalkanes. Appl Environ Microbiol 94:360–368

    Google Scholar 

  • Gu L, Lajoie C, Kelly C (2003) Expression of a Phanerochaete chrysosporium manganese peroxidase gene in the yeast Pichia pastoris. Biotechnol Prog 19:1403–1409

    CAS  PubMed  Google Scholar 

  • Haemmerli SD, Leisola MS, Sanglard D, Fiechter A (1986) Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem 261:6900–6903

    CAS  PubMed  Google Scholar 

  • Hamdi M, Bouhamed H, Ellouz R (1991) Optimization of the fermentation of live mill waste waters by Aspergillus niger. Appl Microbiol Biotechnol 36:285–288

    CAS  Google Scholar 

  • Hammel KE, Moen MA (1991) Depolymerization of a synthetic lignin in vitro by lignin peroxidase. Enz Microbial Technol 13:15–18

    CAS  Google Scholar 

  • Hammel KE, Tien M, Kalyanaraman B, Kirk TK (1985) Mechanism of oxidative Cα–Cβ cleavage of a lignin model dimer by Phanerochaete chrysosporium ligninase. J Biol Chem 260:8348–8353

    CAS  PubMed  Google Scholar 

  • Harkin JM (1973) Lignin. In: Butler GW (ed) Chemistry and biochemistry of Herbage. Academic, London, pp 323–373

    Google Scholar 

  • Harvey PJ, Palmer JM, Schoemaker HE, Dekker HL, Wever R (1989) Pre-steady-state kinetic study on the formation of compound I and II of ligninase. Biochim Biophys Acta 994:59–63

    CAS  PubMed  Google Scholar 

  • Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation. FEMS Microbiol Rev 13:125–135

    CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin: In: Lignin humic substances and coal. Wiley-VCH, pp 129–145

  • Hatakka A, Lundell T, Hofrichter M, Maijala P (2003) Manganese peroxidase and its role in the degradation of wood lignin. In: Mansfield SD, Saddler JN (eds) Applications of enzymes to lignocellulosics. ACS Symposium Series 855. American Chemical Society, Washington, DC, pp 230–243

    Google Scholar 

  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S (1999) Biotransformation of 2,4,6-trinitrotoluene with Phanerochaete chrysosporium in agitated cultures at pH 4.5. Appl Environ Microbiol 65:2977–2986

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hilt W, Wolf DH (1992) Stress-induced proteolysis in yeast. Mol Microbiol 6:2437–2442

    CAS  PubMed  Google Scholar 

  • Holzbaur E, Tien M (1988) Structure and regulation of a lignin peroxidase gene from Phanerochaete chrysosporium. Biochem Biophys Res Commun 155:626–633

    CAS  PubMed  Google Scholar 

  • Hu ZC, Korus RA, Venkataramu CR, Crawford RL (1993) Deactivation kinetics of lignin peroxidase from Phanerochaete chrysosporium. Enz Microbial Technol 15:567–574

    CAS  Google Scholar 

  • Huang D, Zeng G, Peng Z, Zhang P, Hu S, Jiang X, Feng C, Chen Y (2008) Biotransformation of rice straw by Phanerochaete chrysosporium and related lignolytic enzymes. Int J Biotechnol 10:86–92

    Google Scholar 

  • Huynh VB, Crawford RL (1985) Novel extracellular enzymes (ligninases) of Phanerochaete chrysosporium. FEMS Microbiol Lett 28:119–123

    Google Scholar 

  • Jäger A, Croan S, Kirk TK (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50:1274–1278

    PubMed  PubMed Central  Google Scholar 

  • Janshekar H, Fiechter A (1988) Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in submerged stirred tank reactors. J Biotechnol 8:97–112

    CAS  Google Scholar 

  • Jeffries TW (1996) Biochemistry and genetics of microbial xylanases. Current opinion in Biotechnology 7:337–342

    CAS  PubMed  Google Scholar 

  • Jeffries TW, Choi S, Kirk TK (1981) Nutritional regulation of lignin degradation by Phanerochaete chrysosporium. Appl Environ Microbiol 42:290–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang F, Kongsaeree, Charron R, Lajoie C, Xu H, Scott G, Kelly C (2008) Production and separation of manganese peroxidase from heme amended yeast cultures. Biotechnol Bioeng 99:540–549

    CAS  PubMed  Google Scholar 

  • Jiménez L, Pérez A, Torre MJDL, Moral A, Serrano L (2007) Characterization of vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus, and of their ethyleneglycol pulps. Bioresour Technol 98:3487–3490

    PubMed  Google Scholar 

  • Johnson TM, Li JK (1991) Heterologous expression and characterization of an active lignin peroxidase from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 291:371–378

    CAS  PubMed  Google Scholar 

  • Johnson TM, Pease EA, Li JK, Tien M (1992) Production and characterization of recombinant lignin peroxidase isozymes H2 from Phanerochaete chrysosporium using recombinant baculovirus. Arch Biochem Biophys 296:660–666

    CAS  PubMed  Google Scholar 

  • Jones SC, Briedis DM (1992) Adhesion and lignin peroxidase production by the white-rot fungus Phanerochaete chrysosporium in a rotating biological contactor. J Biotechnol 24:277–290

    CAS  Google Scholar 

  • Kapich AN, Prior BA, Botha A, Galkin S, Lundell T, Hatakka A (2004) Effect of lignocellulose-containing substrates on production of ligninolytic peroxidases in submerged cultures of Phanerochaete chrysosporium ME446. Enz Microbial Technol 34:187–195

    CAS  Google Scholar 

  • Karimi A, Vahabzadeh F, Bonakdarpour B (2006) Use of Phanerochaete chrysosporium immobilized on Kissiris for synthetic dye decolourization: involvement of manganese peroxidase. World J Microbiol Biotechnol 22:1251–1257

    CAS  Google Scholar 

  • Kerem Z, Friesem D, Hadar Y (1992) Lignocellulose degradation during solid-state fermentation: Pleurotus ostreatus versus Phanerochaete chrysosporium. Appl Environ Microbiol 58:1121–1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten PJ (1990) Glyoxal oxidase of Phanerochaete chrysosporium; its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA 87:2936–2940

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten P, Cullen D (2007) Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet Biol 44:77–87

    CAS  PubMed  Google Scholar 

  • Kersten PJ, Tien M, Kalyanaraman B, Kirk TK (1985) The ligninase of Phanerochaete chrysosporium generates cation radicals from methoxybenzenes. J Biol Chem 260:2609–2612

    CAS  PubMed  Google Scholar 

  • Kersten PJ, Witek C, Vanden Wymelenberg A, Cullen D (1995) Phanerochaete chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization, and heterologous expression of glx1 and glx2. J Bacteriol 177:6106–6110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kersten PJ, Kurek B, Whittaker JW (1996) Redox regulation of enzyme activity during wood decay. In: The international research group on wood preservation; paper prepared for the 27th annual meeting Guadaloupe, French West Indies 19–24, pp 1–7

  • Kerwin BA, Chang BS, Gregg CV, Gonneli M, Li T, Stambini GB (2002) Interactions between PEG and type I soluble tumor necrosis factor receptor: modulation by pH and by PEGylation at the N terminus. Protein Sci 11:1825–1833

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keyser P, Kirk TK, Zeikus JG (1978) Ligninolytic enzyme system of Phanerochaete chrysosporium: synthesized in absence of lignin in response to nitrogen starvation. J Bacteriol 135:790–797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khiyami MA, Pometto AL III, Kennedy WJ (2006) Ligninolytic enzyme production by Phanerochaete chrysosporium in plastic composite support biofilm stirred tank bioreactors. J Agric Food Chem 8:1693–1698

    Google Scholar 

  • Kirk TK (1985) The discovery and promise of lignin-degrading enzymes. In: The Marcus Wallenberg Foundation symposia proceedings: 2, New horizons for biotechnological utilization of the forest resource. Lectures given at the Marcus Wallenberg symposium in Falun, Sweden, pp 27–42

  • Kirk TK (1987) Lignin degrading enzymes. Phil Trans R Soc Lond A 321:461–474

    CAS  Google Scholar 

  • Kirk TK, Farrell RL (1987) Enzymatic ‘combustion’: the microbial degradation of lignin. Ann Rev Microbiol 41:465–505

    CAS  Google Scholar 

  • Kirk TK, Connors WJ, Zeikus JG (1976) Requirement for a growth substrate during lignin decomposition by two wood rotting fungi. Appl Environ Microbiol 32:192–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk TK, Schultz E, Connors WJ, Lorenz LF, Zeikus JG (1978) Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Arch. Microbiol 117:277–285

    CAS  Google Scholar 

  • Kirk TK, Croan S, Tien M, Murtagh KE, Farrell RL (1986a) Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enz Microbial Technol 8:27–32

    CAS  Google Scholar 

  • Kirk TK, Tien M, Kersten PJ, Mozuch MD, Kalyanaraman B (1986b) Ligninase of Phanerochaete chrysosporium. Mechanism of its degradation of the non-phenolic arylglycerol beta-aryl ether substructure of lignin. Biochem J 236:279–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirk TK Jr, Koning JW, Burgess RR, Akhtar M, Blanchette RA, Cameron DC, Cullen D, Kersten PJ, Lightfoot EN, Myers GC, Cachs I, Sykes M, Wall MB (1993) Biopulping—a glimpse of the future? Res. Pap. FPL-RP-523, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, p 74

  • Kirkpatrick N, Palmer JM (1987) Semi-continuous ligninase production using foam-immobilised Phanerochaete chrysosporium. Appl Microbiol Biotechnol 27:129–133

    CAS  Google Scholar 

  • Kishi K, Wariishi H, Marquez L, Dunford HB, Gold MH (1994) Mechanism of manganese peroxidase compound II reduction. Effect of organic acid chelators and pH. Biochemistry 33:8694–8701

    CAS  PubMed  Google Scholar 

  • Kondo R, Harazono K, Sakai K (1994) Bleaching of hardwood kraft pulp with manganese peroxidase secreted from Phanerochaete sordida YK-624. Appl Environ Microbiol 60:4359–4363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242–1246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwahara M, Glenn JK, Morgan MA, Gold MH (1984) Separation and characterization of two extracellular H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. FEBS Lett 169:247–250

    CAS  Google Scholar 

  • Lamar RT, Larsen MJ, Kirk TK (1990) Sensitivity to and degradation of pentachlorophenol by Phanerochaete spp. Appl Environ Microbiol 56:3519–3526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larrondo LF, Canessa P, Vicuña R, Stewart P, Vanden Wymelenberg A, Cullen D (2007) Structure and transcriptional impact of divergent repetitive elements inserted within Phanerochaete chrysosporium strain RP-78 genes. Mol Genet Genomics 277:43–55

    CAS  PubMed  Google Scholar 

  • Lee YY, Ladisch M, Holtzapple M, Elander R, Dale B, Wyman (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96:1959–1966

    PubMed  Google Scholar 

  • Leisola MSA, Fiechter A (1985) Ligninase production in agitated conditions by Phanerochaete chrysosporium. FEMS Microbiol Lett 29:33–36

    CAS  Google Scholar 

  • Leisola MSA, Ulmer D, Haltmeier T, Fiechter A (1983) Rapid solubilization and depolymerization of purified kraft lignin by thin layers of Phanerochaete chrysosporium. Europ J Appl Microbiol Biotechnol 17:117–120

    CAS  Google Scholar 

  • Leisola MSA, Ulmer DC, Waldner R, Fiechter A (1984a) Role of veratryl alcohol in lignin degradation by Phanerochaete chrysosporium. J Biotechnol 1:331–339

    CAS  Google Scholar 

  • Leisola MSA, Ulmer D, Fiechter A (1984b) Factors affecting lignin degradation in lignocellulose by Phanerochaete chrysosporium. Arch Microbiol 137:171–175

    CAS  Google Scholar 

  • Leisola MSA, Schmidt B, Thanei-Wyss U, Fiechter A (1985) Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS Lett 189:267–270

    CAS  Google Scholar 

  • Leisola MSA, Kozulic B, Meussdoerfer F, Fiechter A (1987) Homology among multiple extracellular peroxidases from Phanerochaete chrysosporium. J Biol Chem 262:419–424

    CAS  PubMed  Google Scholar 

  • Lilly WW, Bilbrey RE, Williams BL, Loos LS, Venables DF, Higgins SM (1994) Partial characterization of the cellular proteolytic system of Schizophyllum commune. Mycologia 86:564–570

    CAS  Google Scholar 

  • Linko S (1988) Production and characterization of extracellular lignin peroxidase from immobilised Phanerochaete chrysosporium in a 10-l bioreactor. Enz Microbial Technol 10:410–417

    CAS  Google Scholar 

  • Machado KMG, Silva WRF, Bononi VLR (1996) Screening of ligninolytic fungi for soil remediation. II—production of peroxidases and phenol oxidases. Int Biodeterioration Biodegradation 37:130

    Google Scholar 

  • Mäkeläa M, Galkina S, Hatakkaa A, Lundell T (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enz Microbial Technol 30:542–549

    Google Scholar 

  • Martin JP, Haider K (1979) Biodegradation of 14C-labeled model and cornstalk lignins, phenols, model phenolase humic polymers, and fungal melanins as influenced by a readily available carbon source and soil. Appl Environ Microbiol 38:283–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Sollewijn Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nature Biotechnology 22:695–700

    CAS  PubMed  Google Scholar 

  • Mayfield MB, Kishi K, Alic M, Gold MH (1994) Homologous expression of recombinant manganese peroxidase in Phanerochaete chrysosporium. Appl Environ Microbiol 60:4303–4309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mester T, Jong ED, Field JA (1995) Manganese regulation of veratryl alcohol in white rot fungi and its indirect effect on lignin peroxidase. Appl Environ Microbiol 61:1881–1887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minami M, Kureha O, Mori M, Kamitsuji H, Suzuki K, Irie T (2007) Long serial analysis of gene expression for transcriptome profiling during the initiation or lignolytic enzymes production in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 75:609–618

    CAS  PubMed  Google Scholar 

  • Moreira MT, Palma C, Feijoo G, Lema JM (1998) Strategies for the continuous production of ligninolytic enzymes in fixed and fluidised bed bioreactors. J Biotechnol 66:27–39

    CAS  Google Scholar 

  • Nakamura Y, Sawada T, Sungusia MG, Kobayashi F, Kuwahara M, Ito M (1997) Lignin peroxidase production by Phanerochaete chrysosporium immobilized on polyurethane foam. J Chem Eng Japan 30:1–6

    CAS  Google Scholar 

  • Nie G, Reading NS, Aust SD (1998) Expression of the lignin peroxidase H2 gene from Phanerochaete chrysosporium in Escherichia coli. Biochem Biophys Res Commun 249:146–150

    CAS  PubMed  Google Scholar 

  • North MJ (1982) Comparative biochemistry of the proteinases of eukaryotic microorganisms. Microbiol Rev 46:308–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ochi K (1990) Streptomyces relC mutants with an altered ribosomal protein ST-Lll and genetic analysis of a Streptomyces griseus relC mutant. J Bacteriol 172:4008–4016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Odier E, Artaud I (1992) Degradation of lignin. In: Winkelmann G (ed) Microbial degradation of natural products. VCH, Weinheim, Germany, pp 161–191

    Google Scholar 

  • Orth AB, Denny M, Tien M (1991) Overproduction of lignin-degrading enzymes by an isolate of Phanerochaete chrysosporium. Appl Environ Microbiol 57:2591–2596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orth AB, Royse DJ, Tien M (1993) Ubiquity of lignin degrading peroxidases among various wood-degrading fungi. Appl Environ Microbiol 59:4017–4023

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otjen L, Blanchette RA, Leatham GF (1988) Lignin distribution in wood delignified by white rot fungi: X-ray microanalysis of decayed wood treated with bromine. Holzforschung 42:281–288

    CAS  Google Scholar 

  • Ozcan S, Yildirim V, Kaya L, Albrecht D, Becher D, Hecker M, Ozcengiz G (2007) Phanerochaete chrysosporium soluble proteome as a prelude for the analysis of heavy metal stress response. Proteomics 7:1249–1260

    CAS  PubMed  Google Scholar 

  • Paice MG, Gurnagul N, Jurasek L (1992) Mechanism of hemicellulose-directed prebleaching of kraft pulps. Enz Microbial Technol 14:272–276

    CAS  Google Scholar 

  • Palma JM, Pastori GM, Bueno P, Distefano S, del Río LA (1997) Purification and properties of cytosolic copper, zinc superoxide dismutase from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radical Res 26:83–91

    CAS  Google Scholar 

  • Palmer JM, Evans CS (1983) The enzymic degradation of lignin by white-rot fungi. Philos Trans Ser B 300:293–304

    CAS  Google Scholar 

  • Paszczynski A, Huynh VB, Crawford R (1986) Comparison of ligninase-I and peroxidase-M2 from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 244:750–765

    CAS  PubMed  Google Scholar 

  • Pease EA, Andrawis A, Tien M (1989) Manganese-dependent peroxidase from Phanerochaete chrysosporium. Primary structure deduced from cDNA sequence. J Biol Chem 264:3531–3535

    Google Scholar 

  • Perlack RD, Wright LL, Turhollow A, Graham R, Stokes B, Erbach D (2005) Biomass as feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply (Tech. Rep. ORNL/TM-2006/66). US Department of Energy and Oak Ridge National Laboratory. www1.eere.energy.gov/biomass/pdfs/final_billionton_vision_report2.pdf.

  • Petkau A, Chelack WS, Pleskach SD, Meeker BE, Brady CM (1975) Radioprotection of mice by superoxide dismutase. Biochem Biophys Res Commun 65:886–893

    CAS  PubMed  Google Scholar 

  • Podgronik H, Podgronik A, Milavec P, Perdih A (2001) The effect of agitation and nitrogen concentration on lignin peroxidase (LiP) isoform composition during fermentation of Phanerochaete chrysosporium. J Biotechnol 88:173–176

    Google Scholar 

  • Popp JL, Kirk TK (1991) Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+. Arch Biochem Biophys 288:145–148

    CAS  PubMed  Google Scholar 

  • Poulos TL, Edwards SL, Wariishi H, Gold MH (1993) Crystallographic refinement of lignin peroxidase at 2 Å. J Biol Chem 268:4429–4440

    CAS  PubMed  Google Scholar 

  • Presnell TL, Swaisgood HE, Joyce TW, Chang HM (1994) Investigation into the kinetic properties of immobilized lignin peroxidases. J Biotechnol 35:77–85

    CAS  Google Scholar 

  • Pribnow D, Mayfield MB, Nipper VJ, Brown JA, Gold MH (1989) Characterization of a cDNA encoding a manganese peroxidase, from the lignin degrading basidiomycetes Phanerochaete chrysosporium. J Biol Chem 264:5036–5040

    CAS  PubMed  Google Scholar 

  • Prouty AL (1990) Bench-scale development and evaluation of a fungal bioreactor for color removal from bleach effluents. Appl Microbiol Biotechnol 32:490–493

    CAS  Google Scholar 

  • Randall T, Reddy CA (1991) An improved transformation vector for the lignin-degrading white-rot basidiomycete Phanerochaete chrysosporium. Gene 103:125–130

    CAS  PubMed  Google Scholar 

  • Randall T, Rao TR, Reddy CA (1989) Use of a shuttle vector for the transformation of the white rot basidiomycete, Phanerochaete chrysosporium. Biochem Biophys Res Commun 161:720–725

    CAS  PubMed  Google Scholar 

  • Randall T, Reddy CA, Boominathan K (1991) A novel extrachromosomally maintained transformation vector for the lignin-degrading basidiomycete Phanerochaete chrysosporium. J Bacteriol 173:776–782

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy CA, D’Souza T (1994) Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol Rev 13:137–152

    CAS  PubMed  Google Scholar 

  • Reddy GVB, Gold MH (2000) Degradation of pentachlorophenol by Phanerochaete chrysosporium: intermediates and reactions involved. Microbiology 146:405–413

    CAS  PubMed  Google Scholar 

  • Reid ID, Paice MG (1994) Biological bleaching of kraft pulps by white-rot fungi and their enzymes. FEMS Microbiol Rev 13:369–376

    CAS  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1985) Multiple molecular forms of diarylpropane oxygenase, an H2O2-requiring, lignin-degrading enzyme from Phnaeorchaete chrysosporium. Arch Biochem Biophys 241:304–314

    CAS  PubMed  Google Scholar 

  • Renganathan V, Miki K, Gold MH (1986) Role of molecular oxygen in lignin peroxidase reactions. Arch Biochem Biophys 246:155–161

    CAS  PubMed  Google Scholar 

  • Rogalski J, Lundell T, Leonowicz A, Hatakka A (1991) Production of laccase, lignin peroxidase and manganese-dependent peroxidase by various strains of Trametes versicolor depending on culture conditions. Acta Microbiol Pol 40:221–234

    CAS  Google Scholar 

  • Rosenberg SL (1980) Patterns of diffusibility of lignin and carbohydrate degrading systems in wood rotting fungi. Mycologia 72:798–812

    CAS  Google Scholar 

  • Rothschild N, Levkowitz A, Dosoretz C (1999) Manganese deficiency can replace high oxygen levels needed for lignin peroxidase formation by Phanerochaete chrysosporium. Appl Environ Microbiol 65:483–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruckenstein E, Wang XB (1994) Production of lignin peroxidase by Phanerochaete chrysosporium immobilized on porous poly(styrene-divinylbenzene) carrier and its application to the degrading of 2-chlorophenol. Biotechnol Bioengineer 44:76–86

    Google Scholar 

  • Sato S, Liu F, Koc H, Tien M (2007) Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates. Microbiology 153:3023–3033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada M, Nakatsubo F, Higuchi T, Kirk TK (1981) Biosynthesis of the secondary metabolite veratryl alcohol in relation to lignin degradation in Phanerochaete chrysosporium. Arch Microbiol 129:321–324

    CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry: fundamentals and applications, 2nd ed. Academic, San Diego ISBN:0-12-647481-8

    Google Scholar 

  • Srebotnik E, Messner K (1994) A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white rot fungi. Appl Environ Microbiol 60:1383–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Staszczak M (2002) Proteasomal degradation pathways in Trametes versicolor and Phlebia radiata. Enz Microbial Technol 30:537–541

    CAS  Google Scholar 

  • Staszczak M, Nowak G (1984) Proteinase pattern in Trametes versicolor in response to carbon and nitrogen starvation. Acta Biochim Polon 31:431–437

    CAS  PubMed  Google Scholar 

  • Staszczak M, Nowak G, Grzywnowicz K, Leonowicz A (1996) Proteolytic activities in cultures of selected white-rot fungi. J Basic Microbiol 36:193–203

    CAS  Google Scholar 

  • Stewart P, Whitwam RE, Kersten PJ, Cullen D, Tien M (1996) Efficient expression of a Phanerochaete chrysosporium manganese peroxidase gene in Aspergillus oryzae. Appl Microbiol Biotechnol 62:860–864

    CAS  Google Scholar 

  • Suhara H, Maekawa N, Kubayashi T, Sakai K, Kondo R (2002) Identification of the basidiomycetous fungus isolated from butt rot of the Japanese cypress. Mycoscience 43:477–481

    Google Scholar 

  • Suhara H, Maekawa N, Kaneko S, Hattori T, Sakai K, Kondo R (2003) A new species, Ceriporia lacerate, isolated from white-rotted wood. Mycotaxon 86:335–347

    Google Scholar 

  • Sundaramoorthy S, Kishi K, Gold MH, Poulos TL (1994) Preliminary crystallographic analysis of manganese peroxidase from Phanerochaete chrysosporium. J Mol Biol 238:845–848

    CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Tien M (1985) Marcus Wallenberg foundation symposia proceeding: 2; New horizons. Lectures given at the 1985 Marcus Wallenberg Symposium in Falun, Sweden

  • Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA 81:2280–2284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161B:238–240

    Google Scholar 

  • Tonon F, Odier E (1988) Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 54:466–472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tuisel H, Sinclair R, Bumpus JA, Ashbaugh W, Brock BJ, Aust SD (1990) Lignin peroxidase H2 from Phanerochaete chrysosporium: purification, characterization and stability to temperature and pH. Arch Biochem Biophys 279:158–166

    CAS  PubMed  Google Scholar 

  • Tuor U, Wariishi H, Schoemaker HE, Gold MH (1992) Oxidation of phenolic arylglycerol-β-aryl ether lignin model compounds by manganese peroxidase from Phanerochaete chrysosporium: oxidative cleavage of an α-carbonyl model compound. Biochemistry 31:4986–4995

    CAS  PubMed  Google Scholar 

  • Umezawa T, Higuchi T (1989) Cleavages of aromatic ring and beta-O-4 bond of synthetic lignin (DHP) by lignin peroxidase. FEBS Lett 242:325–329

    CAS  PubMed  Google Scholar 

  • Valli K, Wariishi H, Gold MH (1990) Oxidation of monomethoxylated aromatic compounds by lignin peroxidase: role of veratryl alcohol in lignin biodegradation. Biochemistry 29:8535–8539

    CAS  PubMed  Google Scholar 

  • Van den Hondel CAMJJ, Punt PJ, van Gorcom RFM (1991) Heterologous gene expression in filamentous fungi. In: Bennett JW, Lasure LL (eds) More gene manipulations in fungi. Academic, New York, NY, pp 396–428

    Google Scholar 

  • Vanden Wymelenberg A, Sabata G, Mozuch M, Kersten PJ, Cullen D, Blanchette RA (2006) Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol 72:4871–4877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vares T, Niemenmaa O, Hatakka A (1994) Secretion of ligninolytic enzymes and mineralization of C-ring-labelled synthetic lignin by three Phlebia tremellosa Strains. Appl Environ Microbiol 60:569–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatadri R, Irvine RL (1990) Effect of agitation on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl Environ Microbiol 56:2684–2691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatadri R, Irvine RL (1993) Cultivation of Phanerochaete chrysosporium and production of lignin peroxidase in novel biofilm reactor systems: hollow fiber reactor and silicone membrane reactor. Water Res 27:591–596

    CAS  Google Scholar 

  • Viikari L (2000) Trends in pulp and paper biotechnology. Progress Biotechnol 21:1–5

    Google Scholar 

  • Wadekar RV, North MJ, Watkinson SC (1995) Proteolytic activities in two wood-decaying basidiomycete fungi, Serpula lacrymans and Coriolus versicolor. Microbiology 141:1575–1583

    CAS  Google Scholar 

  • Wang H, Lu F, Du L (2004) Heterologous expression of lignin peroxidase of Phanerochaete chrysosporium in Pichia methanolica. Biotechnol Lett 26:1569–1573

    CAS  PubMed  Google Scholar 

  • Ward PO, Singh A (2002) Bioethanol technology: developments and perspectives. Advan Appl Microbiol 51:53–80

    CAS  Google Scholar 

  • Wariishi H, Dunford HB, Macdonald ID, Gold MH (1989) Manganese peroxidase from the lignin-degrading basidiomycetes Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem 264:3335–3340

    CAS  PubMed  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese (II) oxidation by manganese peroxidase from the basidiomycetes Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 26:23688–23695

    Google Scholar 

  • Whittaker MM, Kersten PJ, Nakamura N, Sanders-Loehr J, Schweizer ES, Whittaker JW (1996) Glyoxal oxidase from Phanerochaete chrysosporium is a new radical-copper oxidase. J Biol Chem 271:681–687

    CAS  PubMed  Google Scholar 

  • Whitwam R, Tien M (1996) Heterologous expression and reconstitution of fungal Mn peroxidase. Arch Biochem Biophys 333:439–446

    CAS  PubMed  Google Scholar 

  • Whitwam RE, Gazarian I, Tien M (1995) Expression of fungal Mn peroxidase in E. coli and refolding to yield active enzyme. Biochem Biophys Res Commun 216:1013–1017

    CAS  PubMed  Google Scholar 

  • Willershausen H, Jaeger A, Graf H (1987) Ligninase production of Phanerochaete chrysosporium by immobilization in bioreactors. J Biotechnol 6:239–243

    CAS  Google Scholar 

  • Wolff SP, Garner A, Dean RT (1986) Free radicals, lipids and protein degradation. Trends Biochem Sci 11:27–31

    CAS  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    CAS  PubMed  Google Scholar 

  • Zacchi L, Burla G, Zuolong D, Harvey PJ (2000) Metabolism of cellulose by Phanerochaete chrysosporium in continuously agitated culture is associated with enhanced production of lignin peroxidase. J Biotechnol 78:185–192

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shulin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D., Chen, S. The white-rot fungus Phanerochaete chrysosporium: conditions for the production of lignin-degrading enzymes. Appl Microbiol Biotechnol 81, 399–417 (2008). https://doi.org/10.1007/s00253-008-1706-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1706-9

Keywords

Navigation