Skip to main content
Log in

Metabolic effects of furaldehydes and impacts on biotechnological processes

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

There is a growing awareness that lignocellulose will be a major raw material for production of both fuel and chemicals in the coming decades—most likely through various fermentation routes. Considerable attention has been given to the problem of finding efficient means of separating the major constituents in lignocellulose (i.e., lignin, hemicellulose, and cellulose) and to efficiently hydrolyze the carbohydrate parts into sugars. In these processes, by-products will inevitably form to some extent, and these will have to be dealt with in the ensuing microbial processes. One group of compounds in this category is the furaldehydes. 2-Furaldehyde (furfural) and substituted 2-furaldehydes—most importantly 5-hydroxymethyl-2-furaldehyde—are the dominant inhibitory compounds found in lignocellulosic hydrolyzates. The furaldehydes are known to have biological effects and act as inhibitors in fermentation processes. The effects of these compounds will therefore have to be considered in the design of biotechnological processes using lignocellulose. In this short review, we take a look at known metabolic effects, as well as strategies to overcome problems in biotechnological applications caused by furaldehydes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulmalik O, Safo MK, Chen Q, Yang J, Brugnara C, Ohene-Frempong K, Abraham DJ, Asakura T (2005) 5-hydroxymethyl-2-furfural modifies intracellular sickle haemoglobin and inhibits sickling of red blood cells. Br J Haematol 128:552–561

    CAS  PubMed  Google Scholar 

  • Adams TB, Doull J, Goodman JI, Munro IC, Newberne P, Portoghese PS, Smith RL, Wagner BM, Weil CS, Woods LA, Ford RA (1997) The FEMA GRAS assessment of furfural used as a flavour ingredient. Food Chem Toxicol 35:739–751

    CAS  PubMed  Google Scholar 

  • Alkasrawi M, Rudolf A, Lidén G, Zacchi G (2006) Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enz Microb Technol 38:279–286

    CAS  Google Scholar 

  • Almeida JR, Modig T, Petersson A, Hahn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    CAS  Google Scholar 

  • Almeida JR, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund MF (2008a) NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 78:939–945

    CAS  PubMed  Google Scholar 

  • Almeida JR, Modig T, Roder A, Lidén G, Gorwa-Grauslund MF (2008b) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnol Biofuels 1:12

    PubMed  PubMed Central  Google Scholar 

  • Alriksson B, Horváth I, Sjöde A, Nilvebrant N-O, Jönsson L (2005) Ammonium hydroxide detoxification of spruce acid hydrolysates. Appl Biochem Biotechnol 124:911–922

    Google Scholar 

  • Alriksson B, Sjöde A, Nilvebrant N-O, Jönsson L (2006) Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 130:599–611

    Google Scholar 

  • Alvarez-Peral FJ, Zaragoza O, Pedreno Y, Arguelles JC (2002) Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiol 148:2599–2606

    CAS  Google Scholar 

  • Arguelles JC (2000) Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    CAS  PubMed  Google Scholar 

  • Banerjee N, Bhatnagar R, Viswanathan L (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 11:226–228

    CAS  Google Scholar 

  • Benaroudj N, Lee DH, Goldberg AL (2001) Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem 276:24261–24267

    CAS  PubMed  Google Scholar 

  • Bhandari N, MacDonald DG, Bakhshi N (1984) Kinetic studies of corn stover saccharification using sulphuric acid. Biotechnol Bioeng 26:320–327

    CAS  PubMed  Google Scholar 

  • Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol Biotechnol 11:147–150

    CAS  Google Scholar 

  • Boyer LJ, Vega JL, Klasson KT, Clausen EC, Gaddy JL (1992) The effects of furfural on ethanol production by Saccharomyces cerevisiae in batch culture. Biomass Bioenergy 3:41–48

    CAS  Google Scholar 

  • Brandberg T, Franzén CJ, Gustafsson L (2004) The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng 98:122–125

    CAS  PubMed  Google Scholar 

  • Burcham PC, Kaminskas LM, Fontaine FR, Petersen DR, Pyke SM (2002) Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products. Toxicol 181–182:229–236

    Google Scholar 

  • Canettieri EV, Rocha GJdM, de Carvalho JJA, de Almeida e Silva JB (2007) Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Biores Technol 98:422–428

    CAS  Google Scholar 

  • Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461

    CAS  PubMed  Google Scholar 

  • Chen S-F, Mowery RA, Chambliss CK, van Walsum GP (2007) Pseudo reaction kinetics of organic degradation products in dilute-acid-catalyzed corn stover pretreatment hydrolysates. Biotechnol Bioeng 98:1135–1145

    CAS  PubMed  Google Scholar 

  • Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD, Mochly-Rosen D (2008) Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Sci 321:1493–1495

    CAS  Google Scholar 

  • Delgenes JP, Moletta R, Navarro JM (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enz Microb Technol 19:220–225

    CAS  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek HP (2007) Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol Bioeng 97:1460–1469

    CAS  PubMed  Google Scholar 

  • García-Aparicio M, Ballesteros I, González A, Oliva J, Ballesteros M, Negro M (2006) Effect of inhibitors released during steam-explosion pretreatment of barley straw on enzymatic hydrolysis. Appl Biochem Biotechnol 129:278–288

    PubMed  Google Scholar 

  • Gibson BR, Lawrence SJ, Boulton CA, Box WG, Graham NS, Linforth RST, Smart KA (2008) The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res 8:574–585

    CAS  PubMed  Google Scholar 

  • Gorsich S, Dien B, Nichols N, Slininger P, Liu Z, Skory C (2006a) Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 71:339–349

    CAS  PubMed  Google Scholar 

  • Gorsich SW, Slininger PJ, McCaffery JM (2006b) The fermentation inhibitor furfural causes cellular damage to Saccharomyces cerevisiae. Biotechnology for Fuels And Chemicals Symposium Proceedings Paper No. 4–17

  • Grant CM, Collinson LP, Roe J-H, Dawes IW (1996) Yeast glutathione reductase is required for protection against oxidative stress and is a target gene for yAP-1 transcriptional regulation. Mol Microbiol 21:171–179

    CAS  PubMed  Google Scholar 

  • Gupta GD, Misra A, Agarwal DK (1991) Inhalation toxicity of furfural vapours: an assessment of biochemical response in rat lungs. J Appl Toxicol 11:343–347

    CAS  PubMed  Google Scholar 

  • Gutiérrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1-An enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164

    PubMed  Google Scholar 

  • Hadi SM, Shahabuddin, Rehman A (1989) Specificity of the interaction of furfural with DNA. Mutat Res 225:101–106

    CAS  PubMed  Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol 1:497–506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heeren G, Jarolim S, Laun P, Rinnerthaler M, Stolze K, Perrone GG, Kohlwein SD, Nohl H, Dawes IW, Breitenbach M (2004) The role of respiration, reactive oxygen species and oxidative stress in mother cell-specific ageing of yeast strains defective in the RAS signalling pathway. FEMS Yeast Res 5:157–167

    CAS  PubMed  Google Scholar 

  • Huang H-J, Ramaswamy S, Tschirner UW, Ramarao BV (2008) A review of separation technologies in current and future biorefineries. Sep Pur Technol 62:1–21

    CAS  Google Scholar 

  • Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38:801–809

    CAS  PubMed  Google Scholar 

  • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res 3:167–175

    CAS  PubMed  Google Scholar 

  • Kanner J, Harel S, Fishbein Y, Shalom P (1981) Furfural accumulation in stored orange juice concentrates. J Agric Food Chem 29:948–949

    CAS  PubMed  Google Scholar 

  • Kelly C, Jones O, Barnhart C, Lajoie C (2008) Effect of furfural, vanillin and syringaldehyde on Candida guilliermondii growth and xylitol biosynthesis. Appl Biochem Biotechnol 148:97–108

    CAS  PubMed  Google Scholar 

  • Khan QA, Hadi SM (1993) Effect of furfural on plasmid DNA. Biochem Mol Biol Int 29:1153–1160

    CAS  PubMed  Google Scholar 

  • Klinke HB, Thomsen AB, Ahring BK (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol 66:10–26

    CAS  PubMed  Google Scholar 

  • Kuster BFM (1990) 5-Hydroxymethylfurfural (HMF). A review focussing on its manufacture. Starch Stärke 42:314–321

    CAS  Google Scholar 

  • Laadan B, Almeida JR, Radstrom P, Hahn-Hägerdal B, Gorwa-Grauslund MF (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25:191–198

    CAS  PubMed  Google Scholar 

  • Landolfo S, Politi H, Angelozzi D, Mannazzu I (2008) ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim Biophys Acta 1780:892–898

    CAS  PubMed  Google Scholar 

  • Larroy C, Fernandez MR, Gonzalez E, Pares X, Biosca JA (2002a) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361:163–172

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larroy C, Pares X, Biosca JA (2002b) Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269:5738–5745

    CAS  PubMed  Google Scholar 

  • Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant N-O (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enz Microbial Technol 24:151–159

    CAS  Google Scholar 

  • Lecomte J, Finiels A, Moreau C (1999) A new selective route to 5-hydroxymethylfurfural from furfural and furfural derivatives over microporous solid acidic catalysts. Ind Crop Prod 9:235–241

    CAS  Google Scholar 

  • Lee YC, Shlyankevich M, Jeong HK, Douglas JS, Surh YJ (1995) Bioactivation of 5-hydroxymethyl-2-furaldehyde to an electrophilic and mutagenic allylic sulfuric acid ester. Biochem Biophys Res Commun 209:996–1002

    CAS  PubMed  Google Scholar 

  • Lee Y, Iyer P, Torget R (1999) Dilute-acid hydrolysis of lignocellulosic biomass. In: Scheper T (ed) Recent progress in bioconversion of lignocellulosics. Springer, Berlin, pp 93–115

    Google Scholar 

  • Linden T, Peetre J, Hahn-Hägerdal B (1992) Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl Environ Microbiol 58:1661–1669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW (2004) Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J Ind Microbiol Biotechnol 31:345–352

    CAS  PubMed  Google Scholar 

  • Liu Z, Slininger P, Gorsich S (2005) Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol 121:451–460

    PubMed  Google Scholar 

  • Liu ZL, Moon J, Andersh JB, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    CAS  PubMed  Google Scholar 

  • Lopez MJ, Nichols NN, Dien BS, Moreno J, Bothast RJ (2004) Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol 64:125–131

    CAS  PubMed  Google Scholar 

  • Mains GH, Laforge FB (1924) Furfural from corncobs. Ind Eng Chem 16:356–359

    CAS  Google Scholar 

  • Martin C, Jonsson LJ (2003) Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enz Microbial Technol 32:386–396

    CAS  Google Scholar 

  • Martín C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme and Microb Technol 31:274–282

    Google Scholar 

  • Martín C, Marcet M, Almazán O, Jönsson LJ (2007) Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Biores Technol 98:1767–1773

    Google Scholar 

  • Michail K, Matzi V, Maier A, Herwig R, Greilberger J, Juan H, Kunert O, Wintersteiger R (2007) Hydroxymethylfurfural: an enemy or a friendly xenobiotic? A bioanalytical approach. Anal Bioanal Chem 387:2801–2814

    CAS  PubMed  Google Scholar 

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Modig T, Almeida JR, Gorwa-Grauslund MF, Lidén G (2008) Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng 100:423–429

    CAS  PubMed  Google Scholar 

  • Moreau C, Belgacem MN, Gandini A (2004) Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top Catal 27:11–30

    CAS  Google Scholar 

  • Mosier NS, Ladisch CM, Ladisch MR (2002) Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol Bioeng 79:610–618

    CAS  PubMed  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Biores Technol 96:673–686

    CAS  Google Scholar 

  • Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted-acid lignocellulosic hydrolyzates for use in fermentative processes: a review. Biores Technol 93:1–10

    CAS  Google Scholar 

  • Navarro AR (1994) Effects of furfural on ethanol fermentation by Saccharomyces cerevisiae: mathematical models. Curr Microbiol 29:87–90

    CAS  Google Scholar 

  • Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58

    PubMed  Google Scholar 

  • Nguyen Q, Tucker M, Keller F, Beaty D, Connors K, Eddy F (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77:133–142

    Google Scholar 

  • Nguyen Q, Tucker M, Keller F, Eddy F (2000) Two-stage dilute-acid pretreatment of softwoods. Appl Biochem Biotechnol 84–86:561–576

    PubMed  Google Scholar 

  • Nichols NN, Sharma LN, Mowery RA, Chambliss CK, van Walsum GP, Dien BS, Iten LB (2008) Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enz Microb Technol 42:624–630

    CAS  Google Scholar 

  • Nigam JN (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    CAS  PubMed  Google Scholar 

  • Nilsson A, Taherzadeh MJ, Lidén G (2001) Use of dynamic step response for control of fed-batch conversion of lignocellulosic hydrolyzates to ethanol. J Biotechnol 89:41–53

    CAS  PubMed  Google Scholar 

  • Nilsson A, Gorwa-Grauslund MF, Hahn-Hägerdal B, Lidén G (2005) Cofactor dependence in furan reduction by Saccharomyces cerevisiae in fermentation of acid-hydrolyzed lignocellulose. Appl Environ Microbiol 71:7866–7871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilvebrant N-O, Reimann A, Larsson S, Jönsson L (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl Biochem Biotechnol 91–93:35–49

    PubMed  Google Scholar 

  • Öhgren K, Galbe M, Zacchi G (2005) Optimization of steam pretreatment of SO2-impregnated corn stover for fuel ethanol production. Appl Biochem Biotechnol 124:1055–1067

    Google Scholar 

  • Öhgren K, Rudolf A, Galbe M, Zacchi G (2006) Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30:863–869

    Google Scholar 

  • Ohta S, Ohsawa I (2006) Dysfunction of mitochondria and oxidative stress in the pathogenesis of Alzheimer’s disease: on defects in the cytochrome c oxidase complex and aldehyde detoxification. J Alzheimers Dis 9:155–166

    PubMed  Google Scholar 

  • Ohta S, Ohsawa I, Kamino K, Ando F, Shimokata H (2004) Mitochondrial ALDH2 deficiency as an oxidative stress. Ann N Y Acad Sci 1011:36–44

    CAS  PubMed  Google Scholar 

  • Oliva J, Sáez F, Ballesteros I, González A, Negro M, Manzanares P, Ballesteros M (2003) Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol 105:141–153

    PubMed  Google Scholar 

  • Olofsson K, Rudolf A, Lidén G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    CAS  PubMed  Google Scholar 

  • Palmqvist E, Almeida JS, Hahn-Hägerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454

    CAS  PubMed  Google Scholar 

  • Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368

    CAS  PubMed  Google Scholar 

  • Petersson A, Almeida JRM, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G (2006) A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast 23:455–464

    CAS  PubMed  Google Scholar 

  • Pfeifer PA, Bonn G, Bobleter O (1984) Influence of biomass degradation products on the fermentation of glucose to ethanol by Saccharomyces carlsbergensis W 34. Biotechnol Lett 6:541–546

    CAS  Google Scholar 

  • Quesada Granados J, VillalonMir M, Lopez Garcia-Serrana H, Lopez Martinez MC (1996) Influence of aging factors on the furanic aldehyde contents of matured brandies: aging markers. J Agric Food Chem 44:1378–1381

    CAS  Google Scholar 

  • Ramirez-Jimenez A, Guerra-Hernandez E, Garcia-Villanova B (2000) Browning indicators in bread. J Agric Food Chem 48:4176–4181

    CAS  PubMed  Google Scholar 

  • Ranatunga T, Jervis J, Helm R, McMillan J, Hatzis C (1997) Identification of inhibitory components toxic toward Zymomonas mobilis CP4(pZB5) xylose fermentation. Appl Biochem Biotechnol 67:185–198

    CAS  Google Scholar 

  • Ranganathan S, Douglas GM, Narendra NB (1985) Kinetic studies of wheat straw hydrolysis using sulphuric acid. Can J Chem Eng 63:840–844

    CAS  Google Scholar 

  • Reynolds SH, Stowers SJ, Patterson RM, Maronpot RR, Aaronson SA, Anderson MW (1987) Activated oncogenes in B6C3F1 mouse liver tumors: implications for risk assessment. Sci 237:1309–1316

    CAS  Google Scholar 

  • Rizzi M, Erlemann P, Bui-Thanh N-A, Dellweg H (1988) Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154

    CAS  Google Scholar 

  • Roberto IC, Mussatto SI, Rodrigues RCLB (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod 17:171–176

    CAS  Google Scholar 

  • Rodriguez-Arnaiz R, Romas Morales P, Zimmering S (1992) Evaluation in Drosophila melanogaster of the mutagenic potential of furfural in the mei-9a test for chromosome loss in germ-line cells and the wing spot test for mutational activity in somatic cells. Mutat Res 280:75–80

    CAS  PubMed  Google Scholar 

  • Rudolf A, Galbe M, Lidén G (2004) Controlled fed-batch fermentations of dilute-acid hydrolysate in pilot development unit scale. Appl Biochem Biotechnol 114:601–617

    Google Scholar 

  • Rudolf A, Alkasrawi M, Zacchi G, Lidén G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enz Microb Technol 37:195–204

    CAS  Google Scholar 

  • Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Lidén G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99:783–790

    CAS  PubMed  Google Scholar 

  • Saha B (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    CAS  PubMed  Google Scholar 

  • Sanchez B, Bautista J (1988) Effects of furfural and 5-hydroxymethylfurfural on the fermentation of Saccharomyces cerevisiae and biomass production from Candida guilliermondii. Enz Microb Technol 10:315–318

    CAS  Google Scholar 

  • Sánchez ÓJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Biores Technol 99:5270–5295

    Google Scholar 

  • Sangarunlert W, Piumsomboon P, Ngamprasertsith S (2007) Furfural production by acid hydrolysis and supercritical carbon dioxide extraction from rice husk. Kor J Chem Eng 24:936–941

    CAS  Google Scholar 

  • Sarvari Horvath I, Franzen CJ, Taherzadeh MJ, Niklasson C, Lidén G (2003) Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol 69:4076–4086

    PubMed  PubMed Central  Google Scholar 

  • Sigler K, Chaloupka J, Brozmanová J, Stadler N, Höfer M (1999) Oxidative stress in microorganisms—I. Folia Microbiol 44:587–624

    CAS  Google Scholar 

  • Söderström J, Pilcher L, Galbe M, Zacchi G (2003) Two-step steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy 24:475–486

    Google Scholar 

  • Szengyel Z, Zacchi G (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 89:31–42

    CAS  PubMed  Google Scholar 

  • Taherzadeh MJ, Eklund R, Gustafsson L, Niklasson C, Lidén G (1997) Characterization and fermentation of dilute-acid hydrolyzates from wood. Ind Eng Chem Res 36:4659–4665

    CAS  Google Scholar 

  • Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G (2000) Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol 53:701–708

    CAS  PubMed  Google Scholar 

  • Talebnia F, Niklasson C, Taherzadeh MJ (2005) Ethanol production from glucose and dilute-acid hydrolyzates by encapsulated S. cerevisiae. Biotechnol Bioeng 90:345–353

    CAS  PubMed  Google Scholar 

  • Tanel A, Averill-Bates DA (2007) Activation of the death receptor pathway of apoptosis by the aldehyde acrolein. Free Radic Biol Med 42:798–810

    CAS  PubMed  Google Scholar 

  • Tomás-Pejó E, Oliva JM, Ballesteros M, Olsson L (2008) Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains. Biotechnol Bioeng 100:1122–1131

    PubMed  Google Scholar 

  • Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685–1696

    CAS  PubMed  Google Scholar 

  • Villa GP, Bartroli R, Lopez R, Guerra M, Enrique M, Penas M, Rodriquez E, Redondo D, Iglesias I, Diaz M (1992) Microbial transformation of furfural to furfuryl alcohol by Saccharomyces-cerevisiae. Acta Biotechnol 12:509–512

    CAS  Google Scholar 

  • von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog 10:555–560

    Google Scholar 

  • Wahlbom CF, Hahn-Hägerdal B (2002) Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng 78:172–178

    CAS  PubMed  Google Scholar 

  • Watson NE, Prior BA, Lategan PM, Lussi M (1984) Factors in acid treated bagasse inhibiting ethanol production from d-xylose by Pachysolen tannophilus. Enz Microb Technol 6:451–456

    CAS  Google Scholar 

  • Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek 58:209–217

    CAS  PubMed  Google Scholar 

  • Wiseman A (2005) Avoidance of oxidative-stress perturbation in yeast bioprocesses by proteomic and genomic biostrategies? Lett Appl Microbiol 40:37–43

    CAS  PubMed  Google Scholar 

  • Zaldivar J, Martinez A, Ingram LO (1999) Effect of selected aldehydes on the growth and fermentation of ethanologenic Escherichia coli. Biotechnol Bioeng 65:24–33

    CAS  PubMed  Google Scholar 

  • Zdzienicka M, Tudek B, Zielenska M, Szymczyk T (1978) Mutagenic activity of furfural in Salmonella typhimurium TA100. Mutat Res 58:205–209

    CAS  PubMed  Google Scholar 

  • Zverlov V, Berezina O, Velikodvorskaya G, Schwarz W (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JA, MB, GL, and MFGG were financially supported by the Swedish Energy Agency. SG was financially supported by the Research Excellence Funds, ORSP, Central Michigan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunnar Lidén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almeida, J.R.M., Bertilsson, M., Gorwa-Grauslund, M.F. et al. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol 82, 625–638 (2009). https://doi.org/10.1007/s00253-009-1875-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1875-1

Keywords

Navigation