Skip to main content
Log in

Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26–30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdel-Mawgoud AM, Aboulwafa MM, Hassouna NA (2008) Characterization of surfactin produced by Bacillus subtilis isolate BS5. Appl Biochem Biotechnol 150:289–303

    Article  CAS  PubMed  Google Scholar 

  • Ahimou F, Jacques P, Deleu M (2000) Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme Microb Technol 27:749–754

    Article  CAS  PubMed  Google Scholar 

  • Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl Environ Microbiol 69:3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonmatin JM, Laprevote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Comb Chem High Throughput Screen 6:541–556

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (1998) Synthesis of biosurfactants in extreme conditions. Appl Microbiol Biotechnol 50:520–529

    Article  CAS  PubMed  Google Scholar 

  • Carsenti-Etesse H, Durant J, Entenza J et al (1993) Effects of subinhibitory concentrations of vancomycin and teicoplanin on adherence of staphylococci to tissue culture plates. Antimicrob Agents Chemother 37:921–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper DG, Macdonald CR, Duff SJ et al (1981) Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl Environ Microbiol 42:408–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dehghan-Noude G, Housaindokht M, Bazzaz BS (2005) Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC 6633. J Microbiol 43:272–276

    PubMed  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2005) Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. J Colloid Interface Sci 283:358–365

    Article  CAS  PubMed  Google Scholar 

  • Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94:2667–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fowler SA, Stacy DM, Blackwell HE (2008) Design and synthesis of macrocyclic peptomers as mimics of a quorum sensing signal from Staphylococcus aureus. Org Lett 10:2329–2332

    Article  CAS  PubMed  Google Scholar 

  • Fracchia L, Dohrmann AB, Martinotti MG et al (2006) Bacterial diversity in a finished compost and vermicompost: differences revealed by cultivation-independent analyses of PCR-amplified 16 S rRNA genes. Appl Microbiol Biotechnol 71:942–952

    Article  CAS  PubMed  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Roayaei E et al (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Interface Sci 324:172–176

    Article  CAS  PubMed  Google Scholar 

  • Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108

    Article  CAS  PubMed  Google Scholar 

  • Harrison JJ, Ceri H, Yerly J et al (2006) The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the Calgary Biofilm Device. Biol Proced Online 8:194–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harshey RM, Mireles JR, Toguchi A (2003) Use of cyclic heptapeptides for the inhibition of biofilm formation. PCT WO03011821 (A2)

  • Houari A, Di Martino P (2007) Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett Appl Microbiol 45:652–656

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Wei Z, Zhao G et al (2008) Optimization of sterilization of Escherichia coli in milk by surfactin and fengycin using a response surface method. Curr Microbiol 56:376–381

    Article  CAS  PubMed  Google Scholar 

  • Irie Y, O'Toole G, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250:237–243

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Bharucha C, Jha S et al (2008) Biosurfactant production using molasses and whey under thermophilic conditions. Bioresour Technol 99:195–199

    Article  CAS  PubMed  Google Scholar 

  • Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol 39:295–301

    CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Pickford R et al (2004) Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol 51:97–113

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Cameotra SS (1998) Production of biosurfactant at mesophilic and thermophilic conditions by a strain of Bacillus subtilis. J Ind Microbiol Biotechnol 20:48–52

    Article  CAS  Google Scholar 

  • Martinotti MG, Puppo M, Varese GC et al (1999) Phenotypic and functional characterization of the microbial communities isolated from compost. Conference proceedings: Sardinia 99, Cagliari. Vol V:383–390

  • Meylheuc T, van Oss CJ, Bellon-Fontaine MN (2001) Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. J Appl Microbiol 91:822–832

    Article  CAS  PubMed  Google Scholar 

  • Mireles JR 2nd, Toguchi A, Harshey RM (2001) Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure-function relationship of lipopeptide biosurfactants. Biochim Biophys Acta 1488:211–218

    Article  CAS  PubMed  Google Scholar 

  • Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60:151–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ongena M, Jacques P, Toure Y et al (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69:29–38

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2001) Staphylococcus aureus and Staphylococcus epidermidis peptide pheromones produced by the accessory gene regulator agr system. Peptides 22:1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Otto M (2004) Quorum-sensing control in Staphylococci—a target for antimicrobial drug therapy? FEMS Microbiol Lett 241:135–141

    Article  CAS  PubMed  Google Scholar 

  • Plaza GA, Zjawiony I, Banat IM (2006) Use of methods for detection of thermophilic biosurfactant-producing bacteria from hydrocarbon-contaminated and bioremediated soils. J Petrol Sci Eng 50:71–77

    Article  CAS  Google Scholar 

  • Rodrigues L, van der Mei HC, Teixeira J et al (2004) Influence of biosurfactants from probiotic bacteria on formation of biofilms on voice prostheses. Appl Environ Microbiol 70:4408–4410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues LR, Banat IM, van der Mei HC et al (2006) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microbiol 100:470–480

    Article  CAS  PubMed  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH et al (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microbe Interact 20:430–440

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22:142–146

    Article  CAS  PubMed  Google Scholar 

  • Sotirova AV, Spasova DI, Galabova DN et al (2008) Rhamnolipid-biosurfactant permeabilizing effects on gram-positive and gram-negative bacterial strains. Curr Microbiol 56:639–644

    Article  CAS  PubMed  Google Scholar 

  • Splendiani A, Livingston AG, Nicolella C (2006) Control of membrane-attached biofilms using surfactants. Biotechnol Bioeng 94:15–23

    Article  CAS  PubMed  Google Scholar 

  • Velraeds MM, van der Mei HC, Reid G et al (1996) Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 62:1958–1963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velraeds MM, van de Belt-Gritter B, Busscher HJ et al (2000) Inhibition of uropathogenic biofilm growth on silicone rubber in human urine by lactobacilli—a teleologic approach. World J Urol 18:422–426

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V et al (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the MARCOPOLO ENGINEERING S.p.a. (Borgo San Dalmazzo, Cuneo, Italy).

Work in H. Ceri’s laboratory and R. J. Turner’s laboratory was funded by grants from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Martinotti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivardo, F., Turner, R.J., Allegrone, G. et al. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83, 541–553 (2009). https://doi.org/10.1007/s00253-009-1987-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-1987-7

Keywords

Navigation