Skip to main content

Advertisement

Log in

The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

It has been proposed that the gastrointestinal tract environment containing high levels of neuroendocrine hormones is important for gut-derived Pseudomonas aeruginosa infections. In this study, we report that the hormone norepinephrine increases P. aeruginosa PA14 growth, virulence factor production, invasion of HCT-8 epithelial cells, and swimming motility in a concentration-dependent manner. Transcriptome analysis of P. aeruginosa exposed to 500 µM, but not 50 µM, norepinephrine for 7 h showed that genes involved in the regulation of the virulence determinants pyocyanin, elastase, and the Pseudomonas quinolone signal (PQS, 2-heptyl-3-hydroxy-4-quinolone) were upregulated. The production of rhamnolipids, which are also important in P. aeruginosa infections, was not significantly altered in suspension cultures upon exposure to 500 µM norepinephrine but decreased on semisolid surfaces. Swarming motility, a phenotype that is directly influenced by rhamnolipids, was also decreased upon 500 µM norepinephrine exposure. The increase in the transcriptional activation of lasR but not that of rhlR and the increase in the levels of PQS suggest that the effects of norepinephrine are mediated primarily through the las quorum-sensing pathway. Together, our data strongly suggest that norepinephrine can play an important role in gut-derived infections by increasing the pathogenicity of P. aeruginosa PA14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlman H, Bhargava HN, Dahlstrom A et al (1981) On the presence of serotonin in the gut lumen and possible release mechanisms. Acta Physiol Scand 112:263–269

    Article  CAS  PubMed  Google Scholar 

  • Alverdy JC, Chang EB (2008) The re-emerging role of the intestinal microflora in critical illness and inflammation: why the gut hypothesis of sepsis syndrome will not go away. J Leukoc Biol 83:461–466

    Article  CAS  PubMed  Google Scholar 

  • Alverdy JC, Holbrook C, Rocha F et al (2000) Gut-derived sepsis occurs when the right pathogen with the right virulence genes meets the right host: evidence for in vivo virulence expression in Pseudomonas aeruginosa. Ann Surg 232:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aneman A, Eisenhofer G, Fandriks L et al (1995) Hepatomesenteric release and removal of norepinephrine in swine. Am J Physiol Regul Integr Comp Physiol 268:924–930

    Article  Google Scholar 

  • Aneman A, Eisenhofer G, Olbe L et al (1996) Sympathetic discharge to mesenteric organs and the liver. Evidence for substantial mesenteric organ norepinephrine spillover. J Clin Invest 97:1640–1646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora SK, Neely AN, Blair B et al (2005) Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun 73:4395–4398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attila C, Ueda A, Cirillo SLG et al (2008a) Pseudomonas aeruginosa PAO1 virulence factors and poplar tree response in the rhizosphere. Microb Biotechnol 1:17–29

    CAS  PubMed  Google Scholar 

  • Attila C, Ueda A, Wood TK (2008b) PA2663 (PpyR) increases biofilm formation in Pseudomonas aeruginosa PAO1 through the psl operon and stimulates virulence and quorum-sensing phenotypes. Appl Microbiol Biotechnol 78:293–307

    Article  CAS  PubMed  Google Scholar 

  • Bansal T, Englert D, Lee J et al (2007) Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infection and immunity 75:4597–4607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bearson BL, Bearson SM (2008) The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar typhimurium. Microb Pathog 44:271–278

    Article  CAS  PubMed  Google Scholar 

  • Caiazza NC, Shanks RMQ, O'Toole GA (2005) Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. J Bacteriol 187:7351–7361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Brown DR, Xie Y et al (2003) Catecholamines modulate Escherichia coli O157:H7 adherence to murine cecal mucosa. Shock 20:183–188

    Article  CAS  PubMed  Google Scholar 

  • Cogan TA, Thomas AO, Rees LE et al (2007) Norepinephrine increases the pathogenic potential of Campylobacter jejuni. Gut 56:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Cox CD (1986) Role of pyocyanin in the acquisition of iron from transferrin. Infection and immunity 52:263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deziel E, Lepine F, Milot S et al (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Cornelis P, Williams P et al (2006) 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol 296:83–91

    Article  CAS  PubMed  Google Scholar 

  • Diggle SP, Matthijs S, Wright VJ et al (2007) The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 14:87–96

    Article  CAS  PubMed  Google Scholar 

  • Dowd SE (2007) Escherichia coli O157:H7 gene expression in the presence of catecholamine norepinephrine. FEMS Microbiol Lett 273:214–223

    Article  CAS  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eldrup E, Richter EA (2000) DOPA, dopamine, and DOPAC concentrations in the rat gastrointestinal tract decrease during fasting. Am J Physiol Endocrinol Metab 279:E815–E822

    Article  CAS  PubMed  Google Scholar 

  • Ernst RK, Guina T, Miller SI (1999) How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis 179:S2326–S2330

    Article  Google Scholar 

  • Filloux A (2004) The underlying mechanisms of type II protein secretion. Biochim Biophys Acta 1694:163–179

    Article  CAS  PubMed  Google Scholar 

  • Fleiszig S, Wiener-Kronish J, Miyazaki H et al (1997) Pseudomonas aeruginosa-mediated cytotoxicity and invasion correlate with distinct genotypes at the loci encoding exoenzyme S. Infect Immun 65:579–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freestone PP, Haigh RD, Williams PH et al (1999) Stimulation of bacterial growth by heat-stable, norepinephrine-induced autoinducers. FEMS Microbiol Lett 172:53–60

    Article  CAS  PubMed  Google Scholar 

  • Freestone PPE, Lyte M, Neal CP et al (2000) The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 182:6091–6098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freestone PP, Sandrini SM, Haigh RD et al (2008) Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16:55–64

    Article  CAS  PubMed  Google Scholar 

  • Gallagher LA, McKnight SL, Kuznetsova MS et al (2002) Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. J Bacteriol 184:6472–6480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garzon A, Li J, Flores A et al (1992) Molybdenum cofactor (chlorate-resistant) mutants of Klebsiella pneumoniae M5al can use hypoxanthine as the sole nitrogen source. J Bacteriol 174:6298–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez Barrios AF, Zuo R, Hashimoto Y et al (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305–316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Green BT, Lyte M, Chen C et al (2004) Adrenergic modulation of Escherichia coli O157:H7 adherence to the colonic mucosa. Am J Physiol Gastrointest Liver Physiol 287:G1238–G1246

    Article  CAS  PubMed  Google Scholar 

  • Hahn PY, Wang P, Tait SM et al (1995) Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4:269–273

    Article  CAS  PubMed  Google Scholar 

  • He J, Baldini RL, Déziel E et al (2004) The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A 101:2530–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooi DSW, Bycroft BW, Chhabra SR et al (2004) Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 72:6463–6470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kendall MM, Rasko DA, Sperandio V (2007) Global effects of the cell-to-cell signaling molecules autoinducer-2, autoinducer-3, and epinephrine in a luxS mutant of enterohemorrhagic Escherichia coli. Infect Immun 75:4875–4884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopin IJ, Zukowska-Grojec Z, Bayorh MA et al (1984) Estimation of intrasynaptic norepinephrine concentrations at vascular neuroeffector junctions in vivo. Naunyn Schmiedebergs Arch Pharmacol 325:298–305

    Article  CAS  PubMed  Google Scholar 

  • Lamont IL, Beare PA, Ochsner U et al (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci 99:7072–7077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinhardt DJ, Arnold J, Shipley KA et al (1993) Plasma NE concentrations do not accurately reflect sympathetic nervous system activity in human sepsis. Am J Physiol Endocrinol Metab 265:E284–E288

    Article  CAS  Google Scholar 

  • Liberati NT, Urbach JM, Miyata S et al (2006) An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long J, Zaborina O, Holbrook C et al (2008) Depletion of intestinal phosphate after operative injury activates the virulence of P. aeruginosa causing lethal gut-derived sepsis. Surgery 144:189–197

    Article  PubMed  Google Scholar 

  • Lyte M (2004) Microbial endocrinology and infectious disease in the 21st century. Trends Microbiol 12:14–20

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Bailey MT (1997) Neuroendocrine–bacterial interactions in a neurotoxin-induced model of trauma. J Surg Res 70:195–201

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Ernst S (1992) Catecholamine induced growth of gram negative bacteria. Life Sci 50:203–212

    Article  CAS  PubMed  Google Scholar 

  • Lyte M, Erickson AK, Arulanandam BP et al (1997) Norepinephrine-induced expression of the K99 pilus adhesin of enterotoxigenic Escherichia coli. Biochem Biophys Res Commun 232:682–686

    Article  CAS  PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Ohman DE, Cryz SJ, Iglewski BH (1980) Isolation and characterization of Pseudomonas aeruginosa PAO mutant that produces altered elastase. J Bacteriol 142:836–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overhage J, Bains M, Brazas MD et al (2008) Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol 190:2671–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci EC, Pearson JP, Seed PC et al (1997) Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahme LG, Ausubel FM, Cao H et al (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasko DA, Moreira CG, Li DR et al (2008) Targeting QseC signaling and virulence for antibiotic development. Science 321:1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimmann C, Beyeler M, Latifi A et al (1997) The global activator GacA of Pseudomonas aeruginosa PAO1 positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol Microbiol 24:309–319

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Bedzyk LA, Thomas SM et al (2004a) Gene expression in Escherichia coli biofilms. Appl Microbiol Biotechnol 64:515–524

    Article  CAS  PubMed  Google Scholar 

  • Ren D, Bedzyk LA, Ye RW et al (2004b) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88:630–642

    Article  CAS  PubMed  Google Scholar 

  • Schook LB, Carrick L Jr, Berk RS (1976) Murine gastrointestinal tract as a portal of entry in experimental Pseudomonas aeruginosa infections. Infect Immun 14:564–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim H, Chauhan S, Ryoo D et al (2000) Rhizosphere competitiveness of trichloroethylene-degrading, poplar-colonizing recombinant bacteria. Appl Environ Microbiol 66:4673–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Ogura H, Goto M et al (2006) Altered gut flora and environment in patients with severe SIRS. J Trauma 60:126–133

    Article  PubMed  Google Scholar 

  • Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 6:56–60

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Evans K, Meyer JM et al (1998) Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166:341–345

    Article  CAS  PubMed  Google Scholar 

  • Ueda A, Wood TK (2008) Potassium and sodium transporters of Pseudomonas aeruginosa regulate virulence to barley. Appl Microbiol Biotechnol 79:843–858

    Article  CAS  PubMed  Google Scholar 

  • Usher LR, Lawson RA, Geary I et al (2002) Induction of neutrophil apoptosis by the Pseudomonas aeruginosa exotoxin pyocyanin: a potential mechanism of persistent infection. J Immunol 168:1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Van Delden C, Iglewski BH (1998) Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis 4:551–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34:399–413

    Article  CAS  PubMed  Google Scholar 

  • Vlisidou I, Lyte M, van Diemen PM et al (2004) The neuroendocrine stress hormone norepinephrine augments Escherichia coli O157:H7-induced enteritis and adherence in a bovine ligated ileal loop model of infection. Infect Immun 72:5446–5451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wade DS, Calfee MW, Rocha ER et al (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Koo DJ, Zhou M et al (2000) Gut-derived norepinephrine plays a critical role in producing hepatocellular dysfunction during early sepsis. Am J Physiol Gastrointest Liver Physiol 279:G1274–G1281

    Article  CAS  PubMed  Google Scholar 

  • Zhou M, Hank Simms H, Wang P (2004) Increased gut-derived norepinephrine release in sepsis: up-regulation of intestinal tyrosine hydroxylase. Biochim Biophys Acta 1689:212–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Texas Engineering Experiment Station (AJ) and the National Institutes of Health (R01 EB003872; TKW). We thank Drs. Akhiro Ueda and Can Attila for help with virulence factor assays and Profs. Mark Lyte and R. Jayaraman for comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arul Jayaraman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

253_2009_2045_MOESM1_ESM.doc

Supplemental Table I: Complete list of differentially expressed genes above the statistically significant cutoff fold change of 4.0 (based on standard deviation of the fold changes of all the genes) in suspension cells of PA14 grown in serum RPMI medium at 37°C for 7 h with and without 50 µM NE. Complete data for the 50-µM DNA microarrays are available using GEO series accession number GSE 13326 (DOC 27 kb)

253_2009_2045_MOESM2_ESM.doc

Supplemental Table II: Complete list of differentially expressed genes above the statistically significant cutoff fold change of 2.0 (based on standard deviation of the fold changes of all the genes) in suspension cells of PA14 grown in serum RPMI medium at 37°C for 7 h with and without 500 µM NE. Complete data for the 50-µM DNA microarrays are available using GEO series accession number GSE 13326 (DOC 41 kb)

253_2009_2045_MOESM3_ESM.doc

Supplemental Table III: Complete list of common genes differentially expressed above the statistically significant cutoff fold change of 4.0-fold (for 50-µM NE array) and 2.0-fold (for 500-µM NE array) in suspension cells of PA14 grown in serum RPMI medium at 37°C for 7 h with and without 50 µM NE (DOC 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, M., Wood, T.K. & Jayaraman, A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol 84, 763–776 (2009). https://doi.org/10.1007/s00253-009-2045-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2045-1

Keywords

Navigation