Skip to main content

Advertisement

Log in

WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum

  • Genomics and Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The mycorrhization helper bacterium Streptomyces sp. AcH 505 inhibits Norway spruce root infection and colonisation by the root and butt rot fungus Heterobasidion annosum 005 but not by the congeneric strain Heterobasidion abietinum 331 because of higher sensitivity of H. annosum 005 towards the AcH 505-derived naphthoquinone antibiotic WS-5995 B. Differences in antibiotic sensitivity between two isolates belonging to two species, H. annosum 005 and H. abietinum 331, were investigated by comparative gene expression analysis using macroarrays and quantitative RT-PCR after WS-5995 B, structurally related mollisin and unrelated cycloheximide application. Treatment with 25 µM WS-5995 B for 2 h resulted in a significant up-regulation of expression of inosine-5′-monophosphate dehydrogenase, phosphoglucomutase and GTPase genes, while the expression of genes encoding for thioredoxin and glutathione dependent formaldehyde dehydrogenase was down-regulated in the sensitive fungal strain. No differential expression in the tolerant strain was detected. Application of WS-5995 B at higher concentrations over a time course experiment revealed that H. annosum 005 and H. abietinum 331 responded differently to WS-5995 B. The fungal gene expression levels depended on both the concentration of WS-5995 B and the duration of its application. The WS-5995 B-unrelated cycloheximide caused highly specific changes in patterns of gene expression. Our findings indicate considerable variations in response to bacterial metabolites by the isolates of the conifer pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abu SM, Li G, Asiegbu FO (2004) Identification of Heterobasidion annosum (S-type) genes expressed during initial stages of conidiospore germination and under varying culture conditions. FEMS Microbiol Lett 233:205–213

    Article  CAS  PubMed  Google Scholar 

  • Adomas A, Asiegbu FO (2006) Analysis of organ-specific responses of Pinus sylvestris to shoot (Gremmeniella abietina) and root (Heterobasidion annosum) pathogens. Physiol Mol Plant P 69:140–152

    Article  CAS  Google Scholar 

  • Adomas A, Eklund M, Johansson M, Asiegbu FO (2006) Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol Ecol 57:26–39

    Article  CAS  PubMed  Google Scholar 

  • Adomas A, Heller G, Li G, Olson A, Chu TM, Osborne J, Craig D, van Zyl L, Wolfinger R, Sederoff R, Dean RA, Stenlid J, Finlay R, Asiegbu FO (2007) Transcript profiling of a conifer pathosystem: response of Pinus sylvestris root tissues to pathogen (Heterobasidion annosum) invasion. Tree Physiol 27:1441–1458

    Article  CAS  PubMed  Google Scholar 

  • Adomas A, Heller G, Olson A, Osborne J, Karlsson M, Nahalkova J, Van Zyl L, Sederoff R, Stenlid J, Finlay R, Asiegbu FO (2008) Comparative analysis of transcript abundance in Pinus sylvestris after challenge with a saprotrophic, pathogenic or mutualistic fungus. Tree Physiol 28:885–897

    Article  CAS  PubMed  Google Scholar 

  • Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM (2003) Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in S. cerevisiae. J Biol Chem 278:34998–35015

    Article  CAS  PubMed  Google Scholar 

  • Asiegbu FO, Abu S, Stenlid J, Johansson M (2004) Sequence polymorphism and molecular characterization of laccase genes of the conifer pathogen Heterobasidion annosum. Mycol Res 108:136–148

    Article  CAS  PubMed  Google Scholar 

  • Baldi P, Hatfield G (2002) DNA microarrays and gene expression. From experiments to data analysis and modelling. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bammert GF, Fostel JM (2000) Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother 44:1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cools HJ, Fraaije BA, Bean TP, Antoniw J, Lucas JA (2007) Transcriptome profiling of the response of Mycosphaerella graminicola isolates to an azole fungicide using cDNA microarrays. Mol Plant Pathol 8:639–651

    Article  CAS  PubMed  Google Scholar 

  • Cueto M, Jensen PR, Kauffman C, Fenical W, Lobkovsky E, Clardy J (2001) Pestalone, a new antibiotic produced by a marine fungus in response to bacterial challenge. J Nat Prod 64:1444–1446

    Article  CAS  PubMed  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: Mechanisms to counteract microbial antagonism. Ann Rev Phytopathol 41:501–538

    Article  CAS  Google Scholar 

  • Duffy B, Keel C, Défago G (2004) Potential role of pathogen signalling in multitrophic plant microbe interactions involved in disease protection. Appl Environ Microbiol 70:1836–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611

    Article  CAS  PubMed  Google Scholar 

  • Foster RC, Marks GC (1967) The fine structure of mycorrhizas of Pinus radiata. Aust J Biol Sci 19:1027–1038

    Article  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka MT (2007) The mycorrhiza helper revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto JG, Beadles-Bohling AS, Wiren KM (2004) Comparison of RiboGreen (R) and 18 S rRNA quantitation for normalizing real-time RT-PCR expression analysis. Biotechniques 36:54–60

    Article  CAS  PubMed  Google Scholar 

  • Heller G, Adomas A, Li G, Osborne J, van Zyl L, Sederoff R, Finlay R, Stenlid J, Asiegbu F (2008) Transcriptional analysis of Pinus sylvestris roots challenged with the ectomycorrhizal fungus Laccaria bicolor. BMC Plant Biology 8:1–13

    Article  CAS  Google Scholar 

  • Hogan DA, Vik Å, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223

    Article  CAS  PubMed  Google Scholar 

  • Johne S, Watzke R, Meusel W, Möllmann U, Härtl A, Dahse H-M, Matthes B, Seifert K (2005) Biotechnological production and bioactivities of mollisin and two new, structurally related fungal naphthoquinone metabolites. Chem Biodivers 2:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Karlsson M, Olson Å, Stenlid J (2003) Expressed sequences from the basidiomycetous tree pathogen Heterobasidion annosum during early infection of Scots pine. Fungal Genet Biol 39:51–59

    Article  CAS  PubMed  Google Scholar 

  • Keller S, Schneider K, Süssmuth RD (2006) Structure elucidation of auxofuran and other metabolites involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot (Tokyo) 59:801–803

    Article  CAS  Google Scholar 

  • Kerridge D (1958) The effect of actidione and other antifungal agents on nucleic acid and protein synthesis in Saccharomyces carlsbergensis. J Gen Microbiol 19:497–506

    Article  CAS  PubMed  Google Scholar 

  • Lehr N-A, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  CAS  PubMed  Google Scholar 

  • Lettieri T (2006) Recent applications of DNA microarray technology to toxicology and ecotoxicology. Environ Health Perspect 114:4–9

    Article  CAS  PubMed  Google Scholar 

  • Li G, Osborne J, Asiegbu FO (2006) A macroarray expression analysis of novel cDNAs vital for growth initiation and primary metabolism during development of Heterobasidion parviporum conidiospores. Environ Microbiol 8:1340–1350

    Article  CAS  PubMed  Google Scholar 

  • Lindermann RG (1988) Phytophthora syringae blight. In: Coyier DL, Roane MR (eds) Compendium of Rhododendron and Azalea diseases. American Phytopathological Society Press, St Paul, MN, pp 15–17

    Google Scholar 

  • Lundén K, Eklund M, Finlay R, Stenlid J, Asiegbu FO (2008) Heterologous array analysis in Heterobasidion: hybridization of cDNA arrays with probe of mycelium of S, P or F-types. J Microbiol Meth 75:219–224

    Article  CAS  Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Progr 3:129–136

    Article  Google Scholar 

  • Manthey K, Krajinski F, Hohnjec N, Firnhaber C, Pühler A, Perlick AM, Küster H (2004) Transcriptome profiling in root nodules and arbuscular mycorrhiza identifies a collection of novel genes induced during Medicago truncatula root endosymbioses. Mol Plant Microbe Interact 17:1063–1077

    Article  CAS  PubMed  Google Scholar 

  • McAlister L, Strausberg S, Kulaga A, Finkelstein DB (1979) Altered patterns of protein synthesis induced by heat shock of yeast. Curr Genet 1:63–74

    Article  CAS  PubMed  Google Scholar 

  • Medentsev AG, Akimenko VK (1998) Naphthoquinone metabolites of the fungi. Phytochemistry 47:935–959

    Article  CAS  PubMed  Google Scholar 

  • Mueller WJ, Albertyn J, Smit MS (2007) Cycloheximide resistance in the Lipomycetaceae revisited. Can J Microbiol 53:509–513

    Article  CAS  Google Scholar 

  • Noverr MC, Huffnagle GB (2004) Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infect Immun 72:6206–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler H-P (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  CAS  PubMed  Google Scholar 

  • Schrey SD, Tarkka MT (2008) Friends and foes: streptomycetes as modulators of plant disease and symbiosis. Antonie Van Leeuwenhoek 94:11–19

    Article  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Silberbach M, Huser A, Kalinowski J, Pühler A, Walter B, Kramer R, Burkovski A (2005) DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 119:357–367

    Article  CAS  PubMed  Google Scholar 

  • Wargo MJ, Hogan DA (2006) Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol 9:359–364

    Article  CAS  PubMed  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Margret Ecke for technical assistance in microbial cultures, Dr. Julia Riedlinger for WS-5995 B preparation, and Dr. Karlheinz Seifert for providing purified mollisin. We thank Dr. Kari Korhonen and Dr. Franz Oberwinkler for Heterobasidion isolates. We further thank Åke Olson, Magnus Karlsson and Jan Stenlid for making available plasmid clones in the present macroarray study. This study was supported by the German Research Foundation (D.F.G.; graduate college ‘Infection Biology’; N.A.L.), the Swedish Research Council for Agricultural Sciences and Forestry (FORMAS), the Carl Tryggers Stiftelse (CTS, Sweden) and by Maj and Tor Nessling Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina A. Lehr.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Complete data set presenting fold changes of genes differentially expressed after macroarray analysis of H. annosum 005 liquid culture supplemented with 25 µM WS 5995 B (DOC 511 kb)

Supplementary Table 2

Fold changes determined by quantitative real-time RT-PCR ± standard deviation of H. annosum 005 (H. an) and H. abietinum 331 (H. ab). A concentration series of WS-5995 B (50, 100, 150 µM) and a time course (0.5, 2, 6 h) have been performed (DOC 157 kb)

Supplementary Fig. 1

The influence of WS-5995 B concentration and longevity of WS-5995 B treatment on Cytochrome P450 gene expression in Heterobasidion abietinum 331 and in Heterobasidion annosum 005. The fold changes of the relative gene expression levels are indicated at 50, 100 and 150 µM WS-5995 B after 0.5, 2, and 6 h treatment. aCytochrome P450 gene expression in Heterobasidion abietinum 331. bCytochrome P450 gene expression in Heterobasidion annosum 005 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehr, N.A., Adomas, A., Asiegbu, F.O. et al. WS-5995 B, an antifungal agent inducing differential gene expression in the conifer pathogen Heterobasidion annosum but not in Heterobasidion abietinum . Appl Microbiol Biotechnol 85, 347–358 (2009). https://doi.org/10.1007/s00253-009-2254-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-009-2254-7

Keywords

Navigation