Skip to main content
Log in

Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A xylanase gene xyn10A was isolated from the human gut bacterium Bacteroides xylanisolvens XB1A and the gene product was characterized. Xyn10A is a 40-kDa xylanase composed of a glycoside hydrolase family 10 catalytic domain with a signal peptide. A recombinant His-tagged Xyn10A was produced in Escherichia coli and purified. It was active on oat spelt and birchwood xylans and on wheat arabinoxylans. It cleaved xylotetraose, xylopentaose, and xylohexaose but not xylobiose, clearly indicating that Xyn10A is a xylanase. Surprisingly, it showed a low activity against carboxymethylcellulose but no activity at all against aryl-cellobioside and cellooligosaccharides. The enzyme exhibited K m and V max of 1.6 mg ml−1 and 118 µmol min−1 mg−1 on oat spelt xylan, and its optimal temperature and pH for activity were 37°C and pH 6.0, respectively. Its catalytic properties (k cat/K m = 3,300 ml mg−1 min−1) suggested that Xyn10A is one of the most active GH10 xylanase described to date. Phylogenetic analyses showed that Xyn10A was closely related to other GH10 xylanases from human Bacteroides. The xyn10A gene was expressed in B. xylanisolvens XB1A cultured with glucose, xylose or xylans, and the protein was associated with the cells. Xyn10A is the first family 10 xylanase characterized from B. xylanisolvens XB1A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baba T, Shinke R, Nanmori T (1994) Identification and characterization of clustered genes for thermostable xylan-degrading enzymes, β-xylosidase and xylanase, of Bacillus stearothermophilus 21. Appl Environ Microbiol 60:2252–2258

    CAS  Google Scholar 

  • Béra-Maillet C, Ribot Y, Forano E (2004) Fiber-degrading systems of different strains of the genus Fibrobacter. Appl Environ Microbiol 70:2172–2179

    Article  Google Scholar 

  • Biely P, Vrsanská M, Tenkanen M, Kluepfel D (1997) Endo-β1, 4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166

    Article  CAS  Google Scholar 

  • Bourgois TM, Van Craeyveld V, Van Campenhout S, Courtin CM, Delcour JA, Robben J, Volckaert G (2007) Recombinant expression and characterization of XynD from Bacillus subtillis subsp. subtilis ATCC 6051: a GH43 arabinoxylan arabinofuranohydrolase. Appl Microbiol Biotechnol 75:1309–1317

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Chassard C, Goumy V, Leclerc M, Del'homme C, Bernalier-Donadille A (2007) Characterization of the xylan-degrading microbial community from human faeces. FEMS Microbiol Ecol 61:121–131

    Article  CAS  Google Scholar 

  • Chassard C, Scott KP, Marquet P, Martin JC, Del'homme C, Dapoigny M, Flint HJ, Bernalier-Donadille A (2008a) Assessment of metabolic diversity within the intestinal microbiota from healthy humans using combined molecular and cultural approaches. FEMS Microbiol Ecol 66:496–504

    Article  CAS  Google Scholar 

  • Chassard C, Delmas E, Lawson PA, Bernalier-Donadille A (2008b) Bacteroides xylanisolvens sp. nov., a xylan-degrading bacterium isolated from human faeces. Int J Syst Evol Microbiol 58:1008–1013

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  Google Scholar 

  • Devillard E, Bera-Maillet C, Flint HJ, Scott KP, Newbold CJ, Wallace RJ, Jouany J-P, Forano E (2003) Characterisation of XYN10B, a modular xylanase from the ruminal protozoan Polyplastron multivesiculatum, with a family 22 carbohydrate-binding module that binds to cellulose. Biochem J 373:495–503

    Article  CAS  Google Scholar 

  • Ducros V, Charnock SJ, Derewenda U, Derewenda ZS, Dauter Z, Dupont C, Shareck F, Morosoli R, Kluepfel D, Davies G (2000) Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J Biol Chem 275:23020–23026

    Article  CAS  Google Scholar 

  • Esbelin J, Martin C, Forano E, Mosoni P (2009) Differential translocation of green fluorescent protein fused to signal sequences of Ruminococcus albus cellulases by the Tat and Sec pathways of Escherichia coli. FEMS Microbiol Lett 294:239–244

    Article  CAS  Google Scholar 

  • Fontes CMG, Gilbert HJ, Hazlewood GP, Clarke JH, Prates JAM, McKie VA, Nagy T, Fernandes TH, Ferreira LMA (2000) A novel Cellvibrio mixtus family 10 xylanase that is both intracellular and expressed under non-inducing conditions. Microbiology 146:1959–1967

    CAS  Google Scholar 

  • Gallardo O, Diaz P, Pastor FI (2003) Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl Microbiol Biotechnol 61:226–233

    CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695

    CAS  Google Scholar 

  • Gilkes NR, Claeyssens M, Aebersold R, Henrissat B, Meinke A, Morrison HD, Kilburn DG, Warren RA, Miller RC Jr (1991) Structural and functional relationships in two families of beta-1,4-glycanases. Eur J Biochem 202:367–377

    Google Scholar 

  • Hamady ZZ, Farrar MD, Whitehead TR, Holland KT, Lodge JP, Carding SR (2008) Identification and use of the putative Bacteroides ovatus xylanase promoter for the inducible production of recombinant human proteins. Microbiology 154:3165–3174

    Article  CAS  Google Scholar 

  • Hespell RB, Whitehead TR (1990) Physiology and genetics of xylan degradation by gastrointestinal tract bacteria. J Dairy Sci 73:3013–3022

    Article  CAS  Google Scholar 

  • Kim DY, Han MK, Park DS, Lee JS, Oh HW, Shin DH, Jeong TS, Kim SU, Bae KS, Son KH, Park HY (2009) Identification and characterization of a novel GH10 xylanase with a fibronectin type 3 domain from a gut bacterium of Eisenia fetida, Cellulosimicrobium sp. HY-13. Appl Environ Microbiol 75:7275–7279

    Article  CAS  Google Scholar 

  • Liebl W, Winterhalter C, Baumeister W, Armbrecht M, Valdez M (2008) Xylanase attachment to the cell wall of the hyperthermophilic bacterium Thermotoga maritima. J Bacteriol 190:1350–1358

    Article  CAS  Google Scholar 

  • Mirande C, Kadlecikova E, Matulova M, Capek P, Bernalier-Donadille A, Forano E, Béra-Maillet C (2010) Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol. doi:10.1111/j.1365-2672.2010.04671

    Google Scholar 

  • Miyazaki K, Martin JC, Marinsek-Logar R, Flint HJ (1997) Degradation and utilisation of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis). Anaerobe 3:373–381

    Article  CAS  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  Google Scholar 

  • Nouaille R, Matulova M, Delort A-M, Forano E (2005) Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. FEBS J 272:2416–2427

    Article  CAS  Google Scholar 

  • Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CMG, Ferreira LMA, Nagy T, Clark SJ, Davies GJ, Gilbert HJ (2004) The mechanism by which family 10 glycoside hydrolase bind decorated substrates. J Biol Chem 279:9597–9605

    Article  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  Google Scholar 

  • Rakotoarivonina H, Terrie C, Chambon C, Forano E, Mosoni P (2009) Proteomic identification of CBM37-containing cellulases produced by the rumen cellulolytic bacterium Ruminococcus albus 20 and their putative involvement in bacterial adhesion to cellulose. Arch Microbiol 191:379–388

    Article  CAS  Google Scholar 

  • Salyers AA, Vercellotti JR, West SHE, Wilkins TD (1977a) Fermentation of mucin and plant polysaccharides by strains of Bacteroides from human colon. Appl Environ Microbiol 33:319–322

    CAS  Google Scholar 

  • Salyers AA, West SHE, Vercellotti JR, Wilkins TD (1977b) Fermentation of mucin and plant polysaccharides by anaerobic bacteria from human colon. Appl Environ Microbiol 34:529–533

    CAS  Google Scholar 

  • Valenzuela SV, Diaz P, Pastor FIJ (2010) Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J Agric Food Chem. doi:10.1021/jf9045792

    Google Scholar 

  • Weaver J, Whitehead TR, Cotta MA, Valentine PC, Salyers AA (1992) Genetic analysis of a locus on the Bacteroides ovatus chromosome which contains xylan utilization genes. Appl Environ Microbiol 58:2764–2770

    Google Scholar 

  • Wedekind KJ, Mansfield HR, Montgomery L (1988) Enumeration and isolation of cellulolytic and hemicellulolytic bacteria from human feces. Appl Environ Microbiol 54:1530–1535

    CAS  Google Scholar 

  • Whitehead TR (1995) Nucleotide sequences of xylan-inducible xylanase and xylosidase/arabinosidase genes from Bacteroides ovatus V975. Biochim Biophys Acta 1244:239–241

    Google Scholar 

  • Zhang GM, Huang J, Huang GR, Ma LX, Zhang XE (2007) Molecular cloning and heterologous expression of a new xylanase gene from Plectosphaerella cucumerina. Appl Microbiol Biotechnol 74:339–346

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The B. xylanisolvens XB1A genome data were provided by the Wellcome Trust Sanger Institute and can be obtained from http://www.sanger.ac.uk/pathogens/metahit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelyne Forano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirande, C., Mosoni, P., Béra-Maillet, C. et al. Characterization of Xyn10A, a highly active xylanase from the human gut bacterium Bacteroides xylanisolvens XB1A. Appl Microbiol Biotechnol 87, 2097–2105 (2010). https://doi.org/10.1007/s00253-010-2694-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2694-0

Keywords

Navigation