Skip to main content
Log in

Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum

  • Biotechnologically Relevant Enzymes and Proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The protein PgChP is a new chitosanase produced by Penicillium chrysogenum AS51D that showed antifungal activity against toxigenic molds. Two isoforms were found by SDS-PAGE in the purified extract of PgChP. After enzymatic deglycosylation, only the smaller isoform was observed by SDS-PAGE. Identical amino acid sequences were obtained from the two isoforms. Analysis of the molecular mass by electrospray ionization-mass spectrometry revealed six major peaks from 30 to 31 kDa that are related to different levels of glycosylation. The pgchp gene has 1,146 bp including four introns and an open reading frame encoding a protein of 304 amino acids. The translated open reading frame has a predicted mass of 32 kDa, with the first 21 amino acids comprising a signal peptide. Two N glycosylation consensus sequences are present in the protein sequence. The deduced sequence showed high identity with fungal chitosanases. A high level of catalytic activity on chitosan was observed. PgChP is the first chitosanase described from P. chrysogenum. Given that enzymes produced by this mold species are granted generally recognized as safe status, PgChP could be used as a food preservative against toxigenic molds and to obtain chitosan oligomers for food additives and nutraceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta R, Rodríguez-Martín A, Martín A, Núñez F, Asensio MA (2009) Selection of antifungal protein-producing molds from dry-cured meat products. Int J Food Microbiol 135:39–46

    Article  CAS  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  Google Scholar 

  • Ak O, Bakir U, Guray T (1998) Production, purification and characterization of chitosanase from Penicillium spinulosum. Biochem Arch 14:221–225

    CAS  Google Scholar 

  • Alfonso C, Martinez MJ, Reyes F (1992) Purification and properties of two endochitosanases from Mucor rouxii implicated in its cell wall degradation. FEMS Microbiol Lett 95:187–194

    Article  CAS  Google Scholar 

  • Batta G, Barna T, Gáspári Z, Sándor S, Kövér KE, Binder U, Sarg B, Kaiserer L, Chhillar AK, Eigentler A, Leiter E, Hegedüs N, Pócsi I, Lindner H, Marx F (2009) Functional aspects of the solution structure and dynamics of PAF—a highly-stable antifungal protein from Penicillium chrysogenum. FEBS J 276:2875–2890

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: signalP 3.0. J Mol Biol 340:783–795

    Article  CAS  Google Scholar 

  • Benito MJ, Córdoba JJ, Alonso M, Asensio MA, Núñez F (2003) Hydrolytic activity of Penicillium chrysogenum Pg222 on pork myofibrillar proteins. Int J Food Microbiol 89:155–161

    Article  CAS  Google Scholar 

  • Benito MJ, Connerton IF, Córdoba JJ (2006) Genetic characterization and expression of the novel fungal protease, EPg222 active in dry-cured meat products. Appl Microbiol Biotechnol 73:356–365

    Article  CAS  Google Scholar 

  • Burge CB (1998) Modeling dependencies in pre-mRNA splicing signals. In: Salzberg S, Searls D, Kasif S (eds) Computational methods in molecular biology. Elsevier Science BV, Amsterdam, pp 127–163

    Google Scholar 

  • Burge CB, Karlin S (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268:78–94

    Article  CAS  Google Scholar 

  • Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8:346–354

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:233–238

    Article  CAS  Google Scholar 

  • Cheng C, Li YK (2000) An Aspergillus chitosanase with potential for large-scale preparation of chitosan oligosaccharides. Biotechnol Appl Biochem 32:197–203

    Article  CAS  Google Scholar 

  • Cheng C, Chang C, Wu Y, Li Y (2005) Exploration of glycosyl hydrolase family 75, a chitosanase from Aspergillus fumigatus. J Biol Chem 281:3137–3144

    Article  CAS  Google Scholar 

  • Cuero RG, Osuji GO (1995) Aspergillus flavus-induced chitosanase in germinating corn and peanut seeds: A. flavus mechanism for growth dominance over associated fungi and concomitant aflatoxin production. Food Addit Contam 12:479–483

    CAS  Google Scholar 

  • Deepak AV, Thippeswamy G, Shivakameshwari MN, Salimath BP (2003) Isolation and characterization of a 29-kDa glycoprotein with antifungal activity from bulbs of Urginea indica. Biochem Biophys Res Commun 311:735–742

    Article  CAS  Google Scholar 

  • Fenton DM, Eveleigh DE (1981) Purification and mode of action of a chitosanase from Penicillium islandicum. J Gen Microbiol 126:151–165

    CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press Inc, Totowa, pp 571–607

    Chapter  Google Scholar 

  • Geert JD, Thomas-Oates J (1998) Analysis of glycoproteins and glycopeptides using fast-atom bombardment. Methods Mol Biol 61:231–241

    Google Scholar 

  • Geisen R (2000) P. nalgiovense carries a gene which is homologous to the paf gene of P. chrysogenum which codes for an antifungal peptide. Int J Food Microbiol 62:95–101

    Article  CAS  Google Scholar 

  • Geyer H, Geyer R (2006) Strategies for analysis of glycoprotein glycosylation. Biochim Biophys Acta 1764:1853–1869

    CAS  Google Scholar 

  • Gurr SJ, Uncles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–193

    Google Scholar 

  • Hedges A, Wolfe RS (1974) Extracellular enzyme from Myxobacter Al-1 that exhibits both β-1, 4 glucanase and chitosanase activities. J Bacteriol 120:844–853

    CAS  Google Scholar 

  • Lacadena J, Martínez del Pozo A, Gasset M, Patiño B, Campos-Olivas R, Vázquez C, Martínez-Ruiz A, Mancheño JM, Oñaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 20:273–281

    Article  Google Scholar 

  • Lee DG, Shin SY, Maeng C, Jin ZZ, Kim KL, Hahm K (1999) Isolation and characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res Commun 263:646–651

    Article  CAS  Google Scholar 

  • Leis O, Madrid JF, Ballesta J, Hernández F (1997) N- and O-linked oligosaccharides in the secretory granules of rat paneth cells: an ultrastructural cytochemical study. J Histochem Cytochem 45:285–294

    CAS  Google Scholar 

  • Maley F, Trimble RB, Tarentino AL, Plummer TH (1989) Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal Biochem 180:195–204

    Article  CAS  Google Scholar 

  • Marx F (2004) Small, basic antifungal proteins secreted from filamentous ascomycetes: a comparative study regarding expression, structure, function and potential application. Appl Microbiol Biotechnol 65:133–142

    Article  CAS  Google Scholar 

  • Marx F, Haas H, Reindl M, Stöffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Gene 167:167–171

    Article  CAS  Google Scholar 

  • Meyer V (2008) A small protein that fights fungi: AFP as a new promising antifungal agent of biotechnological value. Appl Microbiol Biotechnol 78:17–28

    Article  CAS  Google Scholar 

  • Monzingo AF, Marcotte EM, Hart PJ, Robertus JD (1996) Chitinases, chitosanases, and lysozymes can be divided into procaryotic and eucaryotic families sharing a conserved core. Nat Struct Biol 3:133–140

    Article  CAS  Google Scholar 

  • Morelle W, Canis K, Chirat F, Faid V, Michalski JC (2006) The use of mass spectrometry for the proteomic analysis of glycosylation. Proteomics 6:3993–4015

    Article  CAS  Google Scholar 

  • Nakaya N, Omata K, Okahashi I, Nakamura Y, Kolkenbrock HJ, Ulbrich N (1990) Amino-acid sequence and disulphide bridges of an antifungal protein isolated from Aspergillus giganteus. Eur J Biochem 193:31–38

    Article  CAS  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  CAS  Google Scholar 

  • Núñez F, Rodríguez MM, Bermúdez ME, Córdoba JJ, Asensio MA (1996) Composition and toxigenic potential of the mold population on dry-cured Iberian ham. Int J Food Microbiol 32:185–197

    Article  Google Scholar 

  • Prasanna R, Nain L, Tripathi R, Gupta V, Chaudhary V, Middha S, Joshi M, Ancha R, Kaushik BD (2008) Evaluation of fungicidal activity of extracellular filtrates of cyanobacteria—possible role of hydrolytic enzymes. J Basic Microbiol 48:186–194

    Article  CAS  Google Scholar 

  • Pitt JI (1986) A laboratory guide to common Penicillium species. Commonwealth Scientific and Industrial Research Organization, Division of Food Research and Processing, North Ryde, New South Wales, Australia

  • Plummer TH, Tarentino AL (1991) Purification of the oligosaccharide-cleaving enzymes of Flavobacterium meningosepticum. Glycobiology 1:257–263

    Article  CAS  Google Scholar 

  • Robertus JD, Monzingo AF, Marcotte EM, Hart PJ (1998) Structural analysis shows five glycohydrolase families diverged from a common ancestor. J Exp Zool 282:127–132

    Article  CAS  Google Scholar 

  • Rodríguez-Martín A, Acosta R, Liddell S, Núñez F, Benito MJ, Asensio MA (2010) Characterization of the novel antifungal protein PgAFP and the encoding gene of Penicillium chrysogenum. Peptides 31:541–547

    Article  CAS  Google Scholar 

  • Russ G, Poláková K (1973) Molecular-weight determination of proteins and glycoproteins of RNA enveloped viruses by polyacrylamide-gel electrophoresis in SDS. Biochem Biophys Res Commun 55:666–672

    Article  CAS  Google Scholar 

  • Saito A, Ooya T, Miyatsuchi D, Fuchigami H, Terakado K, Nakayama S, Watanabe T, Nagata Y, Ando A (2009) Molecular characterization and antifungal activity of a family 46 chitosanase from Amycolatopsis sp. CsO-2. FEMS Microbiol Lett 293:79–84

    Article  CAS  Google Scholar 

  • Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10:37–51

    Article  CAS  Google Scholar 

  • Shimosaka M, Nogawa M, Ohno Y, Okazaki M (1993) Chitosanase from the plant pathogenic fungus, Fusarium solani f. sp. phaseoli—purification and some properties. Biosci Biotechnol Biochem 57:231–235

    Article  CAS  Google Scholar 

  • Shimosaka M, Kumehara M, Zhang X, Nogawa M, Okazaki M (1996) Cloning and characterization of a chitosanase gene from the plant pathogenic fungus Fusarium solani. J Ferment Bioeng 82:426–431

    Article  CAS  Google Scholar 

  • Shimosaka M, Sato K, Nishiwaki N, Miyazawa T, Okazaki M (2005) Analysis of essential carboxylic amino acid residues for catalytic activity of fungal chitosanases by site-directed mutagenesis. J Biosci Bioeng 5:545–550

    Article  CAS  Google Scholar 

  • Skouri-Gargouri H, Ali MB, Gargouri A (2009) Molecular cloning, structural analysis and modelling of the antifungal peptide from Aspergillus clavatus. Peptides 30:1798–1804

    Article  CAS  Google Scholar 

  • Somashekar D, Joseph R (1992) Partial purification and properties of a novel chitosanase secreted by Rhodotorula gracilis. Lett Appl Microbiol 14:1–4

    Article  CAS  Google Scholar 

  • Su C, Wang D, Yao L, Yu Z (2006) Purification, characterization, and gene cloning of a chitosanase from Bacillus species strain S65. J Agric Food Chem 54:4208–4214

    Article  CAS  Google Scholar 

  • Synowiecki J, Al-Khateeb NAAQ (1997) Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chem 60:605–610

    Article  CAS  Google Scholar 

  • Van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJ, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WH, Joardar V, Kiel JA, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NN, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RA (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  CAS  Google Scholar 

  • Wiesner P, Beck J, Beck KF, Ripka S, Müller G, Lücke S, Schweizer E (1988) Isolation and sequence analysis of the fatty acid synthetase FAS2 gene from Penicillium patulum. Eur J Biochem 177:69–79

    Article  CAS  Google Scholar 

  • Zhang X, Dai A, Zhang X, Kuroiwa K (2000) Purification and characterization of chitosanase and exo-β-d-glucosaminidase from a Koji Mold, Aspergillus oryzae IAM2660. Biosci Biotechnol Biochem 64:1896–1902

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish Ministry of Education and Science (AGL2004-06546-ALI), INIA (RM2006-00013-00-00), and FEDER. Andrea Rodríguez-Martín was the recipient of a FPI grant from the Spanish Ministry of Education and Science. Thanks to Alex Rathbone, University of Nottingham, for tuition in 2D gels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Asensio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez-Martín, A., Acosta, R., Liddell, S. et al. Characterization of the novel antifungal chitosanase PgChP and the encoding gene from Penicillium chrysogenum . Appl Microbiol Biotechnol 88, 519–528 (2010). https://doi.org/10.1007/s00253-010-2767-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2767-0

Keywords

Navigation