Skip to main content

Advertisement

Log in

Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell

  • Bioenergy and Biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard’s coefficient, shows 80–90% similarity in species composition. Biofilm development through fed-batch start-up and subsequent stable continuous operation results in a population shift from γ-Proteobacteria- and Bacteroidetes- to Firmicutes-dominated communities, with other diverse species present at much lower relative proportions. DGGE patterns were analysed by range-weighted richness (Rr) and Pareto–Lorenz evenness distribution curves to investigate the evolution of the bacterial community. The first modules shifted from dominance by species closely related to Bacteroides graminisolvens, Raoultella ornithinolytica and Klebsiella sp. BM21 at the start of continuous-mode operation to a community dominated by Paludibacter propionicigenes-, Lactococcus sp.-, Pantoea agglomerans- and Klebsiella oxytoca-related species with stable power generation (6.0 W/m3) at day 97. Operational strategies that consider the dynamics of the population will provide useful parameters for evaluating system performance in the practical application of microbial fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aelterman P, Rabaey K, Pham HT, Boon N, Verstraete W (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ Sci Technol 40(10):3388–3394

    CAS  PubMed  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2005) At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microbiol 71(12):7724–7736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briones A, Raskin L (2003) Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol 14(3):270–276

    Article  CAS  PubMed  Google Scholar 

  • Chae KJ, Choi MJ, Lee JW, Kim KY, Kim IS (2009) Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells. Bioresour Technol 100(14):3518–3525

    Article  CAS  PubMed  Google Scholar 

  • Chung K, Okabe S (2009) Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system. Appl Microbiol Biotechnol 83(5):965–977

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31(1):442–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopson M, Halinen AK, Rahunen N, Ozkaya B, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA (2007) Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioeng 97(5):1205–1215

    Article  CAS  PubMed  Google Scholar 

  • el Fantroussi S, Verschuere L, Verstraete W, Top EM (1999) Effect of phenylurea herbicides on soil microbial communities estimated by analysis of 16S rRNA gene fingerprints and community-level physiological profiles. Appl Environ Microbiol 65(3):982–988

    Article  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  • Fernández AS, Hashsham SA, Dollhopf SL, Raskin L, Glagoleva O, Dazzo FB, Hickey RF, Criddle CS, Tiedje JM (2000) Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl Environ Microbiol 66(9):4058–4067

    Article  PubMed  PubMed Central  Google Scholar 

  • Freguia S, Rabaey K, Yuan Z, Jr K (2008) Syntrophic processes drive the conversion of glucose in microbial fuel cell anodes. Environ Sci Technol 42(21):7937–7943

    Article  CAS  PubMed  Google Scholar 

  • Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Si I, Logan B, Nealson KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. PNAS 103(30):11358–11363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grady CPL, Daigger GT, Lim HC (1999) Biological wastewater treatment, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  • Green SJ, Leigh MB, Neufeld JD (2009) Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In: Timmis KN (ed) Microbiology of hydrocarbons, oils, lipids and derived compounds. Springer, Heidelberg, pp 4137–4158

    Google Scholar 

  • He Z, Wagner N, Minteer SD, Angenent LT (2006) An upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedance spectroscopy. Environ Sci Technol 40(17):5212–5217

    Article  CAS  PubMed  Google Scholar 

  • Huang LP, Zeng RJ, Angelidaki I (2008) Electricity production from xylose using a mediator-less microbial fuel cell. Bioresour Technol 99(10):4178–4184

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Hotta Y, Watanabe K (2008) Methanogenesis versus electrogenesis: morphological and phylogenetic comparisons of microbial communities. Biosci Biotechnol Biochem 72(2):286–294

    Article  CAS  PubMed  Google Scholar 

  • Jung S, Regan J (2007) Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors. Appl Microbiol Biotechnol 77(2):393–402

    Article  CAS  PubMed  Google Scholar 

  • Kim JR, Premier GC, Hawkes FR, Dinsdale RM, Guwy AJ (2009) Development of a tubular microbial fuel cell (MFC) employing a membrane electrode assembly cathode. J Power Sources 187(2):393–399

    Article  CAS  Google Scholar 

  • Kim JR, Premier GC, Hawkes FR, Rodríguez J, Dinsdale RM, Guwy AJ (2010) Modular tubular microbial fuel cells for energy recovery during sucrose wastewater treatment at low organic loading rate. Bioresour Technol 101(4):1190–1198

    Article  CAS  PubMed  Google Scholar 

  • Koskinen PEP, Kaksonen AH, Puhakka JA (2007) The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidised-bed bioreactor. Biotechnol Bioeng 97(4):742–758

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Phung NT, Chang IS, Kim BH, Sung HC (2003) Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol Lett 223(2):185–191

    CAS  PubMed  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Micro 7(5):375–381

    Article  CAS  Google Scholar 

  • Logan BE, Regan JM (2006a) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14(12):512–518

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006b) Feature article: microbial fuel cells—challenges and applications. Environ Sci Technol 40(17):5172–5180

    Article  CAS  PubMed  Google Scholar 

  • Lovley DR (2006) Microbial fuel cells: novel microbial physiologies and engineering approaches. Curr Opin Biotechnol 17(3):327–332

    Article  CAS  PubMed  Google Scholar 

  • Lower SK, Hochella MF Jr, Beveridge TJ (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha –FeOOH. Science 292(5520):1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar BA, Lai T, Steppi S, Jobb G, Forster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, Konig A, Liss T, Lussmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32(4):1363–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10(6):1571–1581

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73(1):127–141

    Article  CAS  PubMed  Google Scholar 

  • Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial-populations by denaturing gradient gel-electrophoresis analysis of polymerase chain reaction-amplified genes-coding for 16S ribosomal-RNA. Appl Environ Microbiol 59(3):695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishiyama T, Ueki A, Kaku N, Watanabe K, Ueki K (2009) Bacteroides graminisolvens sp nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int J Syst Evol Microbiol 59:1901–1907

    Article  CAS  PubMed  Google Scholar 

  • Norland S. (2004). Gel2k v. 1.2.0.6. http://folk.uib.no/nimsn/gel2k/

  • Phung NT, Lee J, Kang KH, Chang IS, Gadd GM, Kim BH (2004) Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol Lett 233(1):77–82

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Verstraete W (2005) Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23(6):291–298

    Article  CAS  PubMed  Google Scholar 

  • Rabaey K, Clauwaert P, Aelterman P, Verstraete W (2005) Tubular microbial fuel cells for efficient electricity generation. Environ Sci Technol 39(20):8077–8082

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41(13):4781–4786

    Article  CAS  PubMed  Google Scholar 

  • Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittmann BE (2006) Microbial ecology to manage processes in environmental biotechnology. Trends Biotechnol 24(6):261–266

    Article  CAS  PubMed  Google Scholar 

  • Rittmann BE, Krajmalnik-Brown R, Halden RU (2008) Pre-genomic, genomic and postgenomic study of microbial communities involved in bioenergy. Nat Rev Microbiol 6(8):604–612

    Article  CAS  PubMed  Google Scholar 

  • Röling WFM, van Breukelen BM, Braster M, Goeltom MT, Groen J, van Verseveld HW (2000) Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microb Ecol 40(3):177–188

    Article  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Scott K, Murano C, Rimbu G (2007) A tubular microbial fuel cell. J Appl Electrochem 37(9):1063–1068

    Article  CAS  Google Scholar 

  • Ueki A, Akasaka H, Suzuki D, Ueki K (2006) Paludibacter propionicigenes gen. nov., sp nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int J Syst Evol Microbiol 56:39–44

    Article  CAS  PubMed  Google Scholar 

  • White HK, Reimers CE, Cordes EE, Dilly GF, Girguis PR (2009) Quantitative population dynamics of microbial communities in plankton-fed microbial fuel cells. ISME J 3(6):635–646

    Article  PubMed  Google Scholar 

  • Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2(11):1146–1156

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Fang HHP (2000) Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol Lett 22(5):399–405

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Research Councils UK (RCUK) Energy Programme, SUPERGEN Biological Fuel Cell project (EP/D047943/1) supported by grant 68-3A75-3-150. The Energy Programme is an RCUK cross-council initiative led by EPSRC and contributed to by ESRC, NERC, BBSRC and STFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano C. Premier.

Additional information

Jung Rae Kim and Nelli J. Beecroft contributed equally to this paper as first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.33 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.R., Beecroft, N.J., Varcoe, J.R. et al. Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell. Appl Microbiol Biotechnol 90, 1179–1191 (2011). https://doi.org/10.1007/s00253-011-3181-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3181-y

Keywords

Navigation