Skip to main content
Log in

Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Burkholderia sp. strain SJ98 (DSM 23195) was previously isolated and characterized for degradation and co-metabolic transformation of a number nitroaromatic compounds. In the present study, we evaluated its metabolic activity on chlorinated nitroaromatic compounds (CNACs). Results obtained during this study revealed that strain SJ98 can degrade 2-chloro-4-nitrophenol (2C4NP) and utilize it as sole source of carbon, nitrogen, and energy under aerobic conditions. The cells of strain SJ98 removed 2C4NP from the growth medium with sequential release of nearly stoichiometric amounts of chloride and nitrite in culture supernatant. Under aerobic degradation conditions, 2C4NP was transformed into the first intermediate that was identified as p-nitrophenol by high-performance liquid chromatography, LCMS-TOF, and GC-MS analyses. This transformation clearly establishes that the degradation of 2C4NP by strain SJ98 is initiated by “reductive dehalogenation”; an initiation mechanism that has not been previously reported for microbial degradation of CNAC under aerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Apajalahti JH, Salkinoja-Salonen MS (1987) Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. J Bacteriol 169:5125–5130

    CAS  Google Scholar 

  • Beunink J, Rehm HJ (1990) Coupled reductive and oxidative degradation of 4-chloro-2-nitrophenol by a co-immobilized mixed culture system. Appl Microbiol Biotechnol 34:108–115

    Article  CAS  Google Scholar 

  • Bruhn C, Bayly RC, Knackmuss HJ (1988) The in vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria. Arch Microbiol 150:171–177

    Article  CAS  Google Scholar 

  • Chapman PJ, Hooper DJ (1968) The bacterial metabolism of 2,4-xylenol. Biochem J 110:491–498

    CAS  Google Scholar 

  • Chauhan A, Pandey G, Sharma NK, Paul D, Pandey J, Jain RK (2010) p-Nitrophenol degradation via 4-nitrocatechol in Burkholderia sp. SJ98 and cloning of some the lower pathway genes. Environ Sci Technol 44:3435–3441

    Article  CAS  Google Scholar 

  • Cozza CL, Woods SL (1992) Reductive dechlorination pathway for substituted benzenes: a correlation with electronic properties. Biodegradation 58:1385–1387

    Google Scholar 

  • European Economic Community (1982) Communication from the commission to the council on dangerous substances which might be included in list I of council directive 76/464/EEC. European Economic Community, Brussels

    Google Scholar 

  • Ferreira MIM, Marchesi JR, Jansses DB (2008) Degradation of 4-fluorophenol by Arthrobacer sp. strain IF1. Appl Microbiol Biotechnol 78:709–717

    Article  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657

    Article  CAS  Google Scholar 

  • Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK (2010) Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ Sci Technol 44:1069–1077

    Article  CAS  Google Scholar 

  • Haigler BE, Nishino SF, Spain JC (1994) Biodegradation of 4-methyl-5-nitrocatechol by Pseudomonas sp. strain DNT. J Bacteriol 176:3433–3437

    CAS  Google Scholar 

  • Janssen DB, Oppentocht JE, Poelarends GJ (2001) Microbial dehalogenation. Curr Opin Biotechnol 12:254–258

    Article  CAS  Google Scholar 

  • Kadiyala V, Spain JC (1998) A two component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4- nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    CAS  Google Scholar 

  • Katsivela E, Wray V, Pieper DH, Wittich RM (1999) Initial reactions in the biodegradation of 1-chloro-4-nitrobenzene by a newly isolated bacterium, strain LW1. Appl Environ Microbiol 65:1405–1412

    CAS  Google Scholar 

  • Lenke H, Knackmuss HJ (1996) Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol 62:784–790

    CAS  Google Scholar 

  • Linch AL (1974) Biological monitoring for industrial exposure to cyanogenic aromatic nitro and amino compounds. Am Ind Hyg Assoc J 35:426–432

    Article  CAS  Google Scholar 

  • Manickam N, Mau M, Schlomann M (2006) Characterization of the novel HCH degrading strain, Microbacterium sp. ITRC1. Appl Microbiol Biotechnol 69:580–588

    Article  CAS  Google Scholar 

  • Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56:482–507

    CAS  Google Scholar 

  • NC-IUB (1979) Units of enzyme activity. Eur J Biochem 97:319–320

    Article  Google Scholar 

  • Nishino SF, Spain JC (1993) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Appl Environ Microbiol 59:2520–2525

    CAS  Google Scholar 

  • Pandey G, Chauhan A, Samanta SK, Jain RK (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409

    Article  CAS  Google Scholar 

  • Pandey G, Paul D, Jain RK (2003) Branching of o-nitrobenzoate degradation pathway in Arthrobacter protophormiae RKJ100: identification of new intermediates. FEMS Microbiol Lett 229:231–236

    Article  CAS  Google Scholar 

  • Romanov V, Hausinger RP (1996) NADPH-dependent reductive ortho dehalogenation of 2,4- dichlorobenzoic acid in Corynebacterium sepedonicum KZ-4 and Coryneform bacterium strain NTB-1 via 2,4-dichlorobenzoyl coenzyme A. J Bacteriol 178:2656–2661

    CAS  Google Scholar 

  • Samanta SK, Bhushan B, Chauhan A, Jain RK (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123

    Article  CAS  Google Scholar 

  • Schenzle A, Lenke H, Spain JC, Knackmuss HJ (1999) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 65:2317–2323

    CAS  Google Scholar 

  • Schlomann M, Schmidt E, Knackmuss HJ (1990) Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. J Bacteriol 172:5112–5118

    CAS  Google Scholar 

  • Shen JM, Chen ZL, Xu ZZ, Li XY, Xu BB, Qi F (2008) Kinetics and mechanism of degradation of p-chloronitrobenzene in water by ozonation. J Hazard Mater 152:1325–1331

    Article  CAS  Google Scholar 

  • Shimizu M, Yasui T, Matsumoto N (1983) Structural specificity of aromatic compounds with special reference to mutagenic activity in Salmonella typhimurium—a series of chloro- or fluoro-nitrobenzene derivatives. Mutat Res 116:217–238

    Article  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  CAS  Google Scholar 

  • Spain JC, Nishino SF (1987) Degradation of 1,4-dichlorobenzene by Pseudomonas sp. Appl Environ Microbiol 53:1010–1019

    CAS  Google Scholar 

  • Steinwandter H (1987) Research in environmental pollution. II. Determination of polychlorinated nitrobenzenes (PCNB’s) in main river fish. Fresenius Z Anal Chem 326:139–141

    Article  CAS  Google Scholar 

  • Struijs J, Rogers JE (1989) Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol- acclimated pond sediment. Appl Environ Microbiol 55:2527–2531

    CAS  Google Scholar 

  • Susarla S, Masunaga S, Yonezawa Y (1996) Transformations of chloronitrobenzenes in anaerobic sediment. Chemosphere 32:967–977

    Article  Google Scholar 

  • Symons ZC, Bruce NC (2006) Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep 23:845–850

    Article  CAS  Google Scholar 

  • van den Tweel WJJ, Kok JB, de Bont JAM (1987) Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iodobenzoate by Alcaligenes denitrificans NTB-1. Appl Environ Microbiol 53:810–815

    Google Scholar 

  • van der Meer JR (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie Leeuwenhoek 71:159–178

    Article  Google Scholar 

  • Wu JF, Jiang CY, Wang BJ, Ma YF, Liu ZP, Liu SJ (2006) Novel partial reductive pathway for 4-chloronitrobenzene and nitrobenzene degradation in Comamonas sp. strain CNB-1. Appl Environ Microbiol 72:1759–1765

    Article  CAS  Google Scholar 

  • Yoshida T (1993) Determination of p-chloronitrobenzene and its metabolites in urine by reversed-phase high-performance liquid chromatography. J Chromatogr 613:79–88

    Article  CAS  Google Scholar 

  • Yurawecz MP, Puma BJ (1983) Identification of chlorinated nitrobenzene residues in Mississippi River fish. J Assoc Off Anal Chem 66:1345–1352

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Department of Biotechnology (DBT), India and the Council for Scientific and Industrial Research (CSIR), India. We are thankful to Ms. Mahima Pant and Mr. Vivek Mahajan for their technical help during this study. JP, AC, and PKA acknowledge the research scholarship provided by CSIR, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(JPG 26.4 kb)

High-resolution image (TIFF 16.4 MB)

Fig. S2

(JPG 23.4 kb)

High-resolution image (TIFF 20.0 MB)

Fig. S3

(JPG 32.0 kb)

High-resolution image (TIFF 19.2 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, J., Heipieper, H.J., Chauhan, A. et al. Reductive dehalogenation mediated initiation of aerobic degradation of 2-chloro-4-nitrophenol (2C4NP) by Burkholderia sp. strain SJ98. Appl Microbiol Biotechnol 92, 597–607 (2011). https://doi.org/10.1007/s00253-011-3254-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3254-y

Keywords

Navigation