Skip to main content
Log in

The PII protein GlnK is a pleiotropic regulator for morphological differentiation and secondary metabolism in Streptomyces coelicolor

  • Genomics, Transcriptomics, Proteomics
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

GlnK is an important nitrogen sensor protein in Streptomyces coelicolor. Deletion of glnK results in a medium-dependent failure of aerial mycelium and spore formation and loss of antibiotic production. Thus, GlnK is not only a regulator of nitrogen metabolism but also of morphological differentiation and secondary metabolite production. Through a comparative transcriptomic approach between the S. coelicolor wild-type and a S. coelicolor glnK mutant strain, 142 genes were identified that are differentially regulated in both strains. Among these are genes of the ram and rag operon, which are involved in S. coelicolor morphogenesis, as well as genes involved in gas vesicle biosynthesis and ectoine biosynthesis. Surprisingly, no relevant nitrogen genes were found to be differentially regulated, revealing that GlnK is not an important nitrogen sensor under the tested conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arcondéguy T, Jack R, Merrick M (2001) PII signal transduction proteins, pivotal players in microbial nitrogen control. Microbiol Mol Biol Rev 65:80–105

    Article  Google Scholar 

  • Atkinson MR, Ninfa AJ (1998) Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli. Mol Microbiol 29:431–447

    Article  CAS  Google Scholar 

  • Battke F, Symons S, Nieselt K (2010) Mayday—integrative analytics for expression data. BMC Bioinforma 11:121

    Google Scholar 

  • Battke F, Herbig A, Wentzel A, Jakobsen OM, Bonin M, Hodgson DA, Wohlleben W, Ellingsen TE, STREAM Consortium, Nieselt K (2011) A technical platform for generating reproducible expression data from Streptomyces coelicolor batch cultivations. Adv Exp Med Biol 696:3–15

    Article  CAS  Google Scholar 

  • Bierman M, Logan R, O’Brien K, Seno ET, Rao RN, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on bias and variance. Bioinformatics 19:185–193

    Article  CAS  Google Scholar 

  • Boogerd FC, Ma H, Bruggeman FJ, van Heeswijk WC, García-Contreras R, Molenaar D, Krab K, Westerhoff HV (2011) AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH +4 /NH3. FEBS Lett 585:23–28

    Article  CAS  Google Scholar 

  • Bullock WO, Fernandez JM, Short JM (1987) Xl1-Blue, a high efficiency plasmid transforming recA Escherichia coli strain with beta galactosidase selection. Focus 5:376–378

    CAS  Google Scholar 

  • Bursy J, Kuhlmann AU, Pittelkow M, Hartmann H, Jebbar M, Pierik AJ, Bremer E (2008) Synthesis and uptake of the compatible solutes ectoine and 5-hydroxyectoine by Streptomyces coelicolor A3(2) in response to salt and heat stresses. Appl Environ Microbiol 74:7286–7296

    Article  CAS  Google Scholar 

  • Chakraburtty R, Bibb MJ (1997) The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J Bacteriol 179:5854–5861

    CAS  Google Scholar 

  • Chater KF, Bucca G, Dyson P, Fowler K, Gust B, Herron P, Hesketh A, Hotchkiss G, Kieser T, Mersinias V, Smith CP (2002) Streptomyces coelicolor A3(2): from genome sequence to function. Methods Microbiol 33:321–336

    Article  CAS  Google Scholar 

  • Claessen D, Rink R, de Jong W, Siebring J, de Vreugd P, Boersma FG, Dijkhuizen L, Wosten HA (2003) A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev 17:1714–1726

    Article  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  CAS  Google Scholar 

  • D’Alia D, Eggle D, Nieselt K, Hu WS, Breitling R, Takano E (2011) Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2). Microb Biotechnol 4:239–251

    Article  Google Scholar 

  • Fink D, Falke D, Wohlleben W, Engels A (1999) Nitrogen metabolism in Streptomyces coelicolor A3(2): modification of glutamine synthetase I by an adenylyltransferase. Microbiology 145:2313–2322

    CAS  Google Scholar 

  • Fink D, Weißschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  CAS  Google Scholar 

  • Fischer M, Alderson J, van Keulen G, White J, Sawers RG (2011) The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three active respiratory nitrate reductases. Microbiology 156(Pt 10):3166–3179

    Google Scholar 

  • Flett F, Mersinias V, Smith CP (1997) High efficiency intergeneric conjugal transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol Lett 155:223–229

    Article  CAS  Google Scholar 

  • Forchhammer K (2008) PII signal transducers: novel functional and structural insights. Trends Microbiol 16:65–72

    Article  CAS  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004) affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307–315

    Article  CAS  Google Scholar 

  • Hesketh A, Fink D, Gust B, Rexer H-U, Scheel B, Chater K, Wohlleben W, Engels A (2002) The GlnD and GlnK homologues of Streptomyces coelicolor A3(2) are functionally dissimilar to their nitrogen regulatory system counterparts from enteric bacteria. Mol Microbiol 46:319–330

    Article  CAS  Google Scholar 

  • Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Article  CAS  Google Scholar 

  • Hopwood DA, Chater KF, Bibb MJ (1995) Genetics of antibiotic production in Streptomyces coelicolor A3(2), a model streptomycete. Biotechnology 28:65–102

    CAS  Google Scholar 

  • Horinouchi S (2002) A microbial hormone, A-factor, as a master switch for morphological differentiation and secondary metabolism in Streptomyces griseus. Front Biosci 7:2045–2057

    Article  Google Scholar 

  • Ihaka R, Gentleman R (2005) R: a language for data analysis and graphics. J Comput Graph Stat 5:299–314

    Google Scholar 

  • Jäger G, Battke F, Nieselt K (2011) TIALA - Time Series Alignment Analysis. In Proceedings of the 1st IEEE Symposium on Biological Data Visualization (IEEE VisWeek). Providence, USA

  • Jakoby M, Krämer R, Burkovski A (1999) Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 173:303–310

    Article  CAS  Google Scholar 

  • Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  • Lewis RA, Shahi SK, Laing E, Bucca G, Efthimiou G, Bushell M, Smith CP (2011) Genome-wide transcriptomic analysis of the response to nitrogen limitation in Streptomyces coelicolor A3(2). BMC Res Notes 4:78

    Article  Google Scholar 

  • MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–88

    Article  CAS  Google Scholar 

  • Magasanik B (1996) Regulation of nitrogen utilization. In: Neidhardt FC, Curtiss IR, Ingraham JL, Lin ECC, Low KB, Magasanik B et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology Press, Washington, pp 1344–1356

    Google Scholar 

  • Malin G, Lapidot A (1996) Induction of synthesis of tetrahydropyrimidine derivatives in Streptomyces strains and their effect on Escherichia coli in response to osmotic and heat stress. J Bacteriol 178:385–395

    CAS  Google Scholar 

  • Manteca A, Alvarez R, Salazar N, Yagüe P, Sanchez J (2008) Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Appl Environ Microbiol 74:3877–3886

    Article  CAS  Google Scholar 

  • Merrick MJ, Edwards RA (1995) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    CAS  Google Scholar 

  • Nguyen KT, Willey JM, Nguyen LD, Nguyen LT, Viollier PH, Thompson CJ (2002) A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor. Mol Microbiol 46:1223–1238

    Article  CAS  Google Scholar 

  • Nieselt K, Battke F, Herbig A, Bruheim P, Wentzel A, Jakobsen ØM, Sletta H, Alam MT, Merlo ME, Moore J, Omara WA, Morrissey ER, Juarez-Hermosillo MA, Rodríguez-García A, Nentwich M, Thomas L, Iqbal M, Legaie R, Gaze WH, Challis GL, Jansen RC, Dijkhuizen L, Rand DA, Wild DL, Bonin M, Reuther J, Wohlleben W, Smith MC, Burroughs NJ, Martín JF, Hodgson DA, Takano E, Breitling R, Ellingsen TE, Wellington EM (2010) The dynamic architecture of the metabolic switch in Streptomyces coelicolor. BMC Genomics 11:10

    Article  Google Scholar 

  • Nolden L, Ngouoto-Nkili C-E, Bendt AK, Krämer R, Burkovski A (2001) Sensing nitrogen limitation in Corynebacterium glutamicum: the role of glnK and glnD. Mol Microbiol 42:1281–1295

    Article  CAS  Google Scholar 

  • Pullan ST, Chandra G, Bibb MJ, Merrick M (2011) Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genomics 12:175

    Article  CAS  Google Scholar 

  • Reuther J, Wohlleben W (2007) Nitrogen metabolism in Streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12:139–146

    Article  CAS  Google Scholar 

  • Rexer HU, Schäberle T, Wohlleben W, Engels A (2006) Investigation of the functional properties and regulation of three glutamine synthetase-like genes in Streptomyces coelicolor A3(2). Arch Microbiol 186:447–458

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Manzanal T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • San Paolo S, Huang J, Cohen SN, Thompson CJ (2006) rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol Microbiol 5:1167–1186

    Article  Google Scholar 

  • Shetty ND, Reddy MC, Palaninathan SK, Owen JL, Sacchettini JC (2010) Crystal structure of the apo and ATP bound Mycobacterium tuberculosis nitrogen regulatory PII protein. Protein Sci 19:1513–1524

    Article  CAS  Google Scholar 

  • Strösser J, Lüdke A, Schaffer S, Krämer R, Burkovski A (2004) Regulation of GlnK activity: modification, membrane sequestration and proteolysis as regulatory principles in the network of nitrogen control in Corynebacterium glutamicum. Mol Microbiol 54:132–147

    Article  Google Scholar 

  • Süsstrunk U, Pidoux J, Taubert S, Ullmann A, Thompson CJ (1998) Pleiotropic effects of cAMP on germination, antibiotic biosynthesis and morphological development in Streptomyces coelicolor. Mol Microbiol 30:33–46

    Article  Google Scholar 

  • van Keulen G, Hopwood DA, Dijkhuizen L, Sawers RG (2005) Gas vesicles in actinomycetes: old buoys in novel habitats? Trends Microbiol 13:350–354

    Article  Google Scholar 

  • Viollier PH, Minas W, Dale GE, Folcher M, Thompson CJ (2001) Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol 183:3184–3192

    Article  CAS  Google Scholar 

  • Willey JM, Willems A, Kodani S, Nodwell JR (2006) Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol 59(3):731–742

    Article  CAS  Google Scholar 

  • Yang YH, Song E, Kim EJ, Lee K, Kim WS, Park SS, Hahn JS, Kim BG (2009) NdgR, an IclR-like regulator involved in amino-acid-dependent growth, quorum sensing, and antibiotic production in Streptomyces coelicolor. Appl Microbiol Biotechnol 82:50–511

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Anders Øverby, Sunniva Hoel, Øyvind M. Jakobsen, and Ingemar Nærdal for their excellent participation in fermentation experiments and the members of the STREAM consortium led by E. M. H. Wellington for their input and discussions. This project was supported by the EU-funded (FP6) ActinoGEN project (LSHM-CT-2004-005224) and grants of the ERA-NET SysMO Project [GEN2006-27745-E/SYS]: (P-UK-01-11-3i), “STREAM”, and the Research Council of Norway [project no. 181840/I30].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Mast.

Additional information

Eva Waldvogel and Alexander Herbig are the first authors of the article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Expression profiles of the 41 genes that show a variant expression profile in the SCglnK-3 mutant but not in the wild-type strain. The centroid profile is shown as a dotted blue line (JPEG 80 kb)

High resolution (TIFF 452 kb)

Fig. S2

Expression profiles of the nar2 operon (blue: wild-type; red: SC glnK-3). (JPEG 123 kb)

High resolution (TIFF 205 kb)

Fig. S3

Expression profiles of the ectABCD genes (blue: wild-type; red: SCglnK-3) (JPEG 116 kb)

High resolution (TIFF 188 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldvogel, E., Herbig, A., Battke, F. et al. The PII protein GlnK is a pleiotropic regulator for morphological differentiation and secondary metabolism in Streptomyces coelicolor . Appl Microbiol Biotechnol 92, 1219–1236 (2011). https://doi.org/10.1007/s00253-011-3644-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-011-3644-1

Keywords

Navigation