Skip to main content
Log in

Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission

  • Original article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Introduction

In vivo bioluminescence imaging (BLI) is a promising technique for non-invasive tumour imaging. d-luciferin can be administrated intraperitonealy or intravenously. This will influence its availability and, therefore, the bioluminescent signal. The aim of this study is to compare the repeatability of BLI measurement after IV versus IP administration of d-luciferin and assess the correlation between photon emission and histological cell count both in vitro and in vivo.

Materials and methods

Fluc-positive R1M cells were subcutaneously inoculated in nu/nu mice. Dynamic BLI was performed after IV or IP administration of d-luciferin. Maximal photon emission (PEmax) was calculated. For repeatability assessment, every acquisition was repeated after 4 h and analysed using Bland-Altman method. A second group of animals was serially imaged, alternating IV and IP administration up to 21 days. When mice were killed, PEmax after IV administration was correlated with histological cell number.

Results

The coefficients of repeatability were 80.2% (IV) versus 95.0% (IP). Time-to-peak is shorter, and its variance lower for IV (p < 0.0001). PEmax was 5.6 times higher for IV. A trend was observed towards lower photon emission per cell in larger tumours.

Conclusion

IV administration offers better repeatability and better sensitivity when compared to IP. In larger tumours, multiple factors may contribute to underestimation of tumour burden. It might, therefore, be beneficial to test novel therapeutics on small tumours to enable an accurate evaluation of tumour burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim SA, Kim YC, Kim SW, et al. Antitumor activity of novel indirubin derivatives in rat tumor model. Clin Cancer Res 2007;13(1):253-9.

    Article  CAS  PubMed  Google Scholar 

  2. Rehemtulla A, Stegman LD, Cardozo SJ, et al. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia 2000;2(6):491-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jenkins DE, Oei Y, Hornig YS, et al. Bioluminescent imaging (BLI) to improve and refine traditional murine models of tumor growth and metastasis. Clin Exp Metastasis 2003;20(8):733-44.

    Article  CAS  PubMed  Google Scholar 

  4. Contag CH, Jenkins D, Contag PR, Negrin RS. Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2000;2(1-2):41-52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Contag PR, Olomu IN, Stevenson DK, Contag CH. Bioluminescent indicators in living mammals. Nat Med 1998;4(2):245-7.

    Article  CAS  PubMed  Google Scholar 

  6. Hastings JW. Chemistries and colors of bioluminescent reactions: a review. Gene 1996;173(1 Spec):5-11.

    Article  CAS  PubMed  Google Scholar 

  7. Wood KV, Lam YA, McElroy WD. Introduction to beetle luciferases and their applications. J Biolumin Chemilumin 1989;4(1):289-301.

    Article  CAS  PubMed  Google Scholar 

  8. Breckpot K, Dullaers M, Bonehill A, et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 2003;5(8):654-7.

    Article  CAS  PubMed  Google Scholar 

  9. Breckpot K, Heirman C, De Greef C, van der Bruggen P, Thielemans K. Identification of new antigenic peptide presented by HLA-Cw7 and encoded by several MAGE genes using dendritic cells transduced with lentiviruses. J Immunol 2004;172(4):2232-7.

    Article  CAS  PubMed  Google Scholar 

  10. De Jonge F, Van Nassauw L, Van Meir F, Miller HR, Van Marck E, Timmermans JP. Temporal distribution of distinct mast cell phenotypes during intestinal schistosomiasis in mice. Parasite Immunol 2002;24(5):225-31.

    Article  PubMed  Google Scholar 

  11. Frundzhyan V, Ugarova N. Bioluminescent assay of total bacterial contamination of drinking water. Luminescence 2007;22(3):241-4.

    Article  CAS  PubMed  Google Scholar 

  12. Higashi T, Isomoto A, Tyuma I, Kakishita E, Uomoto M, Nagai K. Quantitative and continuous analysis of ATP release from blood platelets with firefly luciferase luminescence. Thromb Haemost 1985;53(1):65-9.

    CAS  PubMed  Google Scholar 

  13. Levin CS. Primer on molecular imaging technology. Eur J Nucl Med Mol Imaging 2005;32(Suppl 2):S325-45.

    Article  PubMed  Google Scholar 

  14. Contag CH, Spilman SD, Contag PR, et al. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol 1997;66(4):523-31.

    Article  CAS  PubMed  Google Scholar 

  15. Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia 1999;1(4):303-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paroo Z, Bollinger RA, Braasch DA, et al. Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden. Mol Imaging 2004;3(2):117-24.

    Article  PubMed  Google Scholar 

  17. Burgos JS, Rosol M, Moats RA, et al. Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. Biotechniques 2003;34(6):1184-8.

    CAS  PubMed  Google Scholar 

  18. Wu JC, Sundaresan G, Iyer M, Gambhir SS. Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Molec Ther 2001;4(4):297-306.

    Article  CAS  Google Scholar 

  19. Wang W, El-Deiry WS. Bioluminescent molecular imaging of endogenous and exogenous p53-mediated transcription in vitro and in vivo using an HCT116 human colon carcinoma xenograft model. Cancer Biol Ther 2003;2(2):196-202.

    Article  PubMed  Google Scholar 

  20. Avram MJ, Krejcie TC, Niemann CU, Enders-Klein C, Shanks CA, Henthorn TK. Isoflurane alters the recirculatory pharmacokinetics of physiologic markers. Anesthesiology 2000;92(6):1757-68.

    Article  CAS  PubMed  Google Scholar 

  21. Baba S, Cho SY, Ye Z, Cheng L, Engles JM, Wahl RL. How reproducible is bioluminescent imaging of tumor cell growth? Single time point versus the dynamic measurement approach. Mol Imaging 2007;6(5):315-22.

    PubMed  Google Scholar 

  22. Edinger M, Cao YA, Hornig YS, et al. Advancing animal models of neoplasia through in vivo bioluminescence imaging. Eur J Cancer 2002;38(16):2128-36.

    Article  CAS  PubMed  Google Scholar 

  23. Sarraf-Yazdi S, Mi J, Dewhirst MW, Clary BM. Use of in vivo bioluminescence imaging to predict hepatic tumor burden in mice. J Surg Res 2004;120(2):249-55.

    Article  PubMed  Google Scholar 

  24. Scatena CD, Hepner MA, Oei YA, et al. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer. Prostate 2004;59(3):292-303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Marleen Keyaerts is a Ph. D. fellow of the Research Foundation—Flanders (Belgium; FWO). Tony Lahoutte is a Senior Clinical Investigator of the Research Foundation—Flanders (Belgium; FWO). Karine Breckpot is a postdoctoral fellow of the Research Foundation—Flanders (Belgium; FWO). The research at ICMI is funded by the Interuniversity Attraction Poles Programme—Belgian State—Belgian Science Policy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marleen Keyaerts.

Additional information

Marleen Keyaerts is a Ph. D. fellow of the Research Foundation—Flanders (Belgium; FWO).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keyaerts, M., Verschueren, J., Bos, T.J. et al. Dynamic bioluminescence imaging for quantitative tumour burden assessment using IV or IP administration of d-luciferin: effect on intensity, time kinetics and repeatability of photon emission. Eur J Nucl Med Mol Imaging 35, 999–1007 (2008). https://doi.org/10.1007/s00259-007-0664-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0664-2

Keywords

Navigation