Skip to main content

Advertisement

Log in

Diagnostic value of PET/CT for the staging and restaging of pediatric tumors

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Objective

The objective of this retrospective study was to compare the diagnostic value of 2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (18F-FDG PET)/CT versus 18F-FDG PET and CT alone for staging and restaging of pediatric solid tumors.

Methods

Forty-three children and adolescents (19 females and 24 males; mean age, 15.2 years; age range, 6–20 years) with osteosarcoma (n = 1), squamous cell carcinoma (n = 1), synovial sarcoma (n = 2), germ cell tumor (n = 2), neuroblastoma (n = 2), desmoid tumor (n = 2), melanoma (n = 3), rhabdomyosarcoma (n = 5), Hodgkin’s lymphoma (n = 7), non-Hodgkin-lymphoma (n = 9), and Ewing’s sarcoma (n = 9) who had undergone 18F-FDG PET/CT imaging for primary staging or follow-up of metastases were included in this study. The presence, location, and size of primary tumors was determined separately for PET/CT, PET, and CT by two experienced reviewers. The diagnosis of the primary tumor was confirmed by histopathology. The presence or absence of metastases was confirmed by histopathology (n = 62) or clinical and imaging follow-up (n = 238).

Results

The sensitivities for the detection of solid primary tumors using integrated 18F-FDG PET/CT (95%), 18F-FDG PET alone (73%), and CT alone (93%) were not significantly different (p > 0.05). Seventeen patients showed a total of 153 distant metastases. Integrated PET/CT had a significantly higher sensitivity for the detection of these metastases (91%) than PET alone (37%; p < 0.05), but not CT alone (83%; p > 0.05). When lesions with a diameter of less than 0.5 cm were excluded, PET/CT (89%) showed a significantly higher specificity compared to PET (45%; p < 0.05) and CT (55%; p < 0.05). In a sub-analysis of pulmonary metastases, the values for sensitivity and specificity were 90%, 14%, 82% and 63%, 78%, 65%, respectively, for integrated PET/CT, stand-alone PET, and stand-alone CT. For the detection of regional lymph node metastases, 18F-FDG PET/CT, 18F-FDG PET alone, and CT alone were diagnostically correct in 83%, 61%, and 42%. A sub-analysis focusing on the ability of PET/CT, PET, and CT to detect osseous metastases showed no statistically significant difference between the three imaging modalities (p > 0.05).

Conclusion

Our study showed a significantly increased sensitivity of PET/CT over that of PET for the detection of distant metastases but not over that of CT alone. However, the specificity of PET/CT for the characterization of pulmonary metastases with a diameter > 0.5 cm and lymph node metastases with a diameter of <1 cm was significantly increased over that of CT alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ross JA, Severson RK, Pollock BH, Robison LL. Childhood cancer in the United States. A geographical analysis of cases from the Pediatric Cooperative Clinical Trials groups. Cancer 1996;77:201–7.

    Article  PubMed  CAS  Google Scholar 

  2. Schöder H, Yeung HW, Larson SM. CT in PET/CT: essential features of interpretation. J Nucl Med 2005;46:13525–5.

    Google Scholar 

  3. Antoch G, Saoudi N, Kuehl H, Dahmen G, Mueller SP, Beyer T, et al. Accuracy of whole-body dual-modality FDG-PET/CT for tumor staging solid tumors: comparison with CT and PET. J Clin Oncol 2004;22:4357–68.

    Article  PubMed  Google Scholar 

  4. Bar-Shalom R, Yefremov N, Guralnik L, Gaitini D, Frenkel A, Kuten A, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 2003;44:1200–9.

    PubMed  Google Scholar 

  5. Pauls S, Buck AK, Hohl K, Halter G, Hetzel M, Blumstein NM, et al. Improved non-invasive T-staging in non-small cell lung cancer by integrated 18F-FDG PET/CT. Nuklearmedizin 2007;46:9–14. quiz N1–2.

    PubMed  CAS  Google Scholar 

  6. Jadvar H, Connolly LP, Fahey FH, Shulkin BL. PET and PET/CT in pediatric oncology. Semin Nucl Med 2007;37:316–31.

    Article  PubMed  Google Scholar 

  7. Franzius C, Juergens KU, Schober O. Is PET/CT necessary in paediatric oncology? For Eur J Nucl Med Mol Imaging 2006;33:960–5.

    Article  Google Scholar 

  8. McCarville MB, Christie R, Daw NC, Spunt SL, Kaste SC. PET/CT in the evaluation of childhood sarcomas. AJR AM J Roentgenol 2006;184:1293–304.

    Google Scholar 

  9. Arush MW, Israel O, Postovsky S, Militianu D, Meller I, Zaidman I, et al. Positron emission tomography/computed tomography with (18) fluoro-deoxyglucose in the detection of local recurrence and distant metastases of pediatric sarcoma. Pediatr Blood Cancer 2007;49:901–5.

    Article  PubMed  Google Scholar 

  10. Franzius C, Juergens KU, Vormoor J. PET/CT with diagnostic CT in the evaluation of childhood sarcoma. AJR AM J Roentgenol 2006;186:581. author reply 581–2.

    Article  PubMed  Google Scholar 

  11. Bar-Sever Z, Keidar Z, Ben-Barak A, Bar-Shalom R, Postovsky S, Guralnik L, et al. The incremental value of (18) F-FDG PET/CT in pediatric malignancies. EUR J Nucl Med Mol Imaging 2007;34:628–9.

    Article  Google Scholar 

  12. Schaefer NG, Taverna C, Strobel K, Wastl C, Kurrer M, Hany TF. Hodgkin disease: diagnostic value of FDG PET/CT after first-line therapy—is biopsy of FDG avid lesions still needed? Radiology 2007;244:257–62.

    Article  PubMed  Google Scholar 

  13. Miller E, Metser U, Avrahami G, Dvir R, Valdman D, Sira LB, et al. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr 2006;30:689–94.

    Article  PubMed  Google Scholar 

  14. Rhodes MM, Delbeke D, Whitlock JA, Martin W, Kuttesch JF, Frangoul HA, et al. Utility of FDG PET/CT in follow-up of children treated for Hodgkin and non-Hodgkin lymphoma. J Pediatr Hematol Oncol 2006;28:300–6.

    Article  PubMed  Google Scholar 

  15. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jürgens H, et al. Whole body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR AM J Roentgenol 2001;177:229–36.

    PubMed  CAS  Google Scholar 

  16. Kauffman WM, Fletcher BD, Hanna SL, Meyer WH. MR imaging findings in recurrent primary osseous Ewing sarcoma. Magn Reson Imaging 1994;12:1147–53.

    Article  PubMed  CAS  Google Scholar 

  17. Shah Syed GM, Naseer H, Usmani GN, Cheema MA. Role of iodine-131 MIBG scanning in the management of paediatric patients with neuroblastoma. Med Princ Pract 2004;13:196–200.

    Article  PubMed  CAS  Google Scholar 

  18. Hahn K, Charron M, Shulkin BL. Role of MR imaging and iodine 123 MIBG scintigraphy in staging of pediatric neuroblastoma. Radiology 2003;227:908.

    Article  PubMed  Google Scholar 

  19. De Wever W, Ceyssens S, Mortelmans L, Stroobants S, Marchal G, Bogaert J, et al. Additional value of PET-CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol 2007;17:23–32.

    Article  PubMed  Google Scholar 

  20. Matthies A, Hickeson M, Cuchiara A, Alavi A. Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 2002;43:871–5.

    PubMed  Google Scholar 

  21. Juergens KU, Weckesser M, Stegger L, Franzius C, Beetz M, Schober O, et al. Tumor staging using whole body high resolution 16-channel PET/CT: does additional low dose chest CT in inspiration improve the detection of solitary pulmonary nodules? Eur Radiol 2006;16:1131–7.

    Article  PubMed  CAS  Google Scholar 

  22. Hany TF, Steinert HC, Goerres GW, Buck A, von Schulthess GK. PET diagnostic accuracy: improvement with in-line PET-CT system: initial results. Radiology 2002;225:575–81.

    Article  PubMed  Google Scholar 

  23. Blodgett TM, Ames JT, Torok FS, McCook BM, Meltzer CC. Diffuse bone marrow uptake on whole body F-18 fluorodeoxyglucose positron emission tomography in patient taking recombinant erythropoietin. Clin Nucl Med 2004;29:161–3.

    Article  PubMed  Google Scholar 

  24. Sugawara Y, Fisher SJ, Zasadny KR, Kison PV, Baker LH, Wahl RL. Preclinical and clinical studies of bone marrow uptake of fluorine-18-fluorodeoxyglucose with or without granulocyte colony-stimulating factor during chemotherapy. J Clin Oncol 1998;16:173–80.

    PubMed  CAS  Google Scholar 

  25. Abouzied MM, Crawford ES, Nabi HA. 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 2005;33:145–55. quiz 162–3.

    PubMed  Google Scholar 

  26. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics 1999;19:61–77. quiz 150–1.

    PubMed  CAS  Google Scholar 

  27. Olson PN, Everson LI, Griffiths HJ. Staging of musculoskeletal tumors. Radiol Clin North Am 1994;32:151–62.

    PubMed  CAS  Google Scholar 

  28. Silberstein E, Saenger E, Tofe AJ, Alexander GW Jr, Park HM. Imaging of bone metastases with 99 mTc-Sn-EHDP (diphosphonate), 18F and skeletal radiography. Radiology 1973;107:551–5.

    PubMed  CAS  Google Scholar 

  29. Yeung HW, Grewal RK, Gonen M, Schöder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 2003;44:1789–96.

    PubMed  Google Scholar 

  30. Gelfand MJ, O’hara SM, Curtwright LA, Mclean JR. Pre-medication to block [(18)F] FDG uptake in the brown adipose tissue of pediatric and adolescent patients. Pediatr Radiology 2005;35:984–90.

    Article  Google Scholar 

  31. Söderlund V, Larsson SA, Jacobsson H. Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propanolol. Eur J Nucl Med Mol Imaging 2007;34:1018–22.

    Article  PubMed  Google Scholar 

  32. Garcia CA, Van Nostrand D, Atkins F, Acio E, Butler C, Esposito G, et al. Reduction of brown fat 2-deoxy-2-[F-18]fluoro-d-glucose uptake by controlling environmental temperature prior to positron emission tomography scan. Mol Imaging Biol 2006;8:24–9.

    Article  PubMed  Google Scholar 

  33. Von Schulthess GK, Hany TF. Imaging and PET-PET/CT imaging. J Radiol 2008;89:438–47. quiz 448.

    Google Scholar 

  34. Visvikis D, Costa DC, Croasdale I, Lonn AH, Bomanji J, Gacinovic S, et al. CT-based attenuation correction in the calculation of semi-quantative indices of [18] FDG uptake in PET. Eur J Nucl Med Mol Imaging 2003;30:344–53.

    PubMed  CAS  Google Scholar 

  35. Ay MR, Zaidi H. Assessment of errors caused by X-ray scatter and use of contrast medium when using CT-based attenuation correction in PET. Eur J Nucl Med Mol Imaging 2006;33:1301–13.

    Article  PubMed  Google Scholar 

  36. Cohade C, Wahl RL. Applications of positron emission tomography/computed tomography image fusion in clinical positron emission tomography—clinical use, interpretation methods, diagnostic improvements. Semin Nucl Med 2003;33:228–37.

    Article  PubMed  Google Scholar 

  37. Vera P, Ouvrier MJ, Hapdey S, Thillays M, Pesquet AS, Diologent B, et al. Does chemotherapy influence the quantification of SUV when contrast-enhanced CT is used in PET/CT in lymphoma? Eur J Nucl Med Mol Imaging 2007;34:1943–52.

    Article  PubMed  CAS  Google Scholar 

  38. Bunyaviroch T, Turkington TG, Wong TZ, Wilson JW, Colsher JG, Coleman RE. Quantitative effects of contrast enhanced CT attenuation correction on PET SUV measurements. Mol Imaging Biol 2008;10:107–13.

    Article  PubMed  Google Scholar 

  39. Kinahan PE, Hasegawa BH, Beyer T. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 2003;33:166–79.

    Article  PubMed  Google Scholar 

  40. Ahmadian A, Ay MR, Bidgoli JH, Sarkar S, Zaidi H. Correction of oral contrast artifacts in CT-based attenuation correction of PET images using an automated segmentation algorithm. Eur J Nucl Med Mol Imaging 2008;5:3542–7.

    Google Scholar 

  41. Dizendorf E, Hany TF, Buck A, von Schulthess GK, Burger C. Cause and magnitude of the error induced by oral CT contrast agent in CT-based attenuation correction of PET emission studies. J Nucl Med 2003;44:732–8.

    PubMed  Google Scholar 

  42. Yau YY, Chan WS, Tam YM, Vernon P, Wong S, Coel M, et al. Application of intravenous contrast in PET/CT: does it really introduce significant attenuation correction error? J Nucl Med 2005;46:283–91.

    PubMed  Google Scholar 

  43. Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Hǿjgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging 2005;32:1167–75.

    Article  PubMed  CAS  Google Scholar 

  44. Kleinermann RA. Cancer risks following diagnostic and therapeutic radiation exposure in children. Pediatr Radiol 2006;36(suppl):121–5.

    Article  Google Scholar 

  45. Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med 2005;46:608–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Daldrup-Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleis, M., Daldrup-Link, H., Matthay, K. et al. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 36, 23–36 (2009). https://doi.org/10.1007/s00259-008-0911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-008-0911-1

Keywords

Navigation