Skip to main content

Advertisement

Log in

Targeted and shielded adenovectors for cancer therapy

  • Symposium Paper
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Conditionally replicative adenovirus (CRAd) vectors are novel vectors with utility as virotherapy agents for alternative cancer therapies. These vectors have already established a broad safety record in humans and overcome some of the limitations of non-replicative adenovirus (Ad) vectors. In addition, one potential problem with these vectors, attainment of tumor or tissue selectivity has widely been addressed. However, two confounding problems limiting efficacy of these drug candidates remains. The paucity of the native Ad receptor on tumor tissues, and host humoral response due to pre-existing titers of neutralizing antibodies against the vector itself in humans have been highlighted in the clinical context. The well-characterized CRAd, AdΔ24-RGD, is infectivity enhanced, thus overcoming the lack of coxsackievirus and adenovirus receptor (CAR), and this agent is already rapidly progressing towards clinical translation. However, the perceived host humoral response potentially will limit gains seen from the infectivity enhancement and therefore a strategy to blunt immunity against the vector is required. On the basis of this caveat a novel strategy, termed shielding, has been developed in which the genetic modification of a virion capsid protein would provide uniformly shielded Ad vectors. The identification of the pIX capsid protein as an ideal locale for genetic incorporation of shielding ligands to conceal the Ad vector from pre-existing neutralizing antibodies is a major progression in the development of shielded CRAds. Preliminary data utilizing an Ad vector with HSV-TK fused to the pIX protein indicates that a shield against neutralizing antibodies can be achieved. The utility of various proteins as shielding molecules is currently being addressed. The creation of AdΔ24S-RGD, an infectivity enhanced and shielded Ad vector will provide the next step in the development of clinically and commercially feasible CRAds that can be dosed multiple times for maximum effectiveness in the fight against cancers in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sinkovics J, Horvath J (1993) New developments in the virus therapy of cancer: a historical review. Intervirology 36:193–214

    PubMed  CAS  Google Scholar 

  2. Alemany R, Balague C, Curiel DT (2000) Replicative adenoviruses for cancer therapy. Nat Biotechnol 18:723–727

    Article  PubMed  CAS  Google Scholar 

  3. Kirn D, Martuza RL, Zwiebel J (2001) Replication-selective virotherapy for cancer: biological principles, risk management and future directions. Nat Med 7:781–787

    Article  PubMed  CAS  Google Scholar 

  4. Russell WC (2000) Update on adenovirus and its vectors. J Gen Virol 81:2573–2604

    PubMed  CAS  Google Scholar 

  5. Glasgow JN, Bauerschmitz GJ, Curiel DT, Hemminki A (2004) Transductional and transcriptional targeting of adenovirus for clinical applications. Curr Gene Ther 4:1–14

    Article  PubMed  CAS  Google Scholar 

  6. Ko D, Hawkins L, Yu DC (2005) Development of transcriptionally regulated oncolytic adenoviruses. Oncogene 24:7763–7774

    Article  PubMed  CAS  Google Scholar 

  7. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, Ng L, Nye JA, Sampson-Johannes A, Fattaey A, McCormick F (1996) An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 274:373–376

    Article  PubMed  CAS  Google Scholar 

  8. Harada JN, Berk AJ (1999) p53-Independent and dependent requirements for E1B-55 K in adenovirus type 5 replication. J Virol 73:5333–5344

    PubMed  CAS  Google Scholar 

  9. Hay JG, Shapiro N, Sauthoff H, Heitner S, Phupakdi W, Rom WN (1999) Targeting the replication of adenoviral gene therapy vectors to lung cancer cells: the importance of the adenoviral E1b-55 kD gene. Hum Gene Ther 10:579–590

    Article  PubMed  CAS  Google Scholar 

  10. Vollmer CM, Ribas A, Butterfield LH, Dissette VB, Andrews KJ, Eilber FC, Montejo LD, Chen AY, Hu B, Glaspy JA, McBride WH, Economou JS (1999) p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res 59:4369–4374

    PubMed  CAS  Google Scholar 

  11. Davis JJ, Fang B (2005) Oncolytic virotherapy for cancer treatment: challenges and solutions. J Gene Med 7:1380–1389

    Article  PubMed  CAS  Google Scholar 

  12. Fueyo J, Gomez-Manzano C, Alemany R, Lee PS, McDonnell TJ, Mitlianga P, Shi YX, Levin VA, Yung WK, Kyritsis AP (2000) A mutant oncolytic adenovirus targeting the Rb pathway produces anti-glioma effect in vivo. Oncogene 19:2–12

    Article  PubMed  CAS  Google Scholar 

  13. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Williams A, Hawkins L, Kirn D (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6:1134–1139

    Article  PubMed  CAS  Google Scholar 

  14. Johnson L, Shen A, Boyle L, Kunich J, Pandey K, Lemmon M, Hermiston T, Giedlin M, McCormick F, Fattaey A (2002) Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 1:325–337

    Article  PubMed  CAS  Google Scholar 

  15. Aghi M, Martuza RL (2005) Oncolytic viral therapies—the clinical experience. Oncogene 24:7802–7816

    Article  PubMed  CAS  Google Scholar 

  16. Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT, Douglas JT (2002) The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 38:1917–1926

    Article  PubMed  CAS  Google Scholar 

  17. Miller CR, Buchsbaum DJ, Reynolds PN, Douglas JT, Gillespie GY, Mayo MS, Raben D, Curiel DT (1998) Differential susceptibility of primary and established human glioma cells to adenovirus infection: targeting via the epidermal growth factor receptor achieves fiber receptor-independent gene transfer. Cancer Res 58:5738–5748

    PubMed  CAS  Google Scholar 

  18. Cripe TP, Dunphy EJ, Holub AD, Saini A, Vasi NH, Mahller YY, Collins MH, Snyder JD, Krasnykh V, Curiel DT, Wickham TJ, DeGregori J, Bergelson JM, Currier MA (2001) Fiber knob modifications overcome low, heterogeneous expression of the coxsackievirus-adenovirus receptor that limits adenovirus gene transfer and oncolysis for human rhabdomyosarcoma cells. Cancer Res 61:2953–2960

    PubMed  CAS  Google Scholar 

  19. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP, Wang Z, Hsieh JT (1999) Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 59:325–330

    PubMed  CAS  Google Scholar 

  20. Okegawa T, Li Y, Pong RC, Bergelson JM, Zhou J, Hsieh JT (2000) The dual impact of coxsackie and adenovirus receptor expression on human prostate cancer gene therapy. Cancer Res 60:5031–5036

    PubMed  CAS  Google Scholar 

  21. Henry LJ, Xia D, Wilke ME, Deisenhofer J, Gerard RD (1994) Characterization of the knob domain of the adenovirus type 5 fiber protein expressed in Escherichia coli. J Virol 68:5239–5246

    PubMed  CAS  Google Scholar 

  22. Krasnykh VN, Mikheeva GV, Douglas JT, Curiel DT (1996) Generation of recombinant adenovirus vectors with modified fibers for altering viral tropism. J Virol 70:6839–6846

    PubMed  CAS  Google Scholar 

  23. Roelvink PW, Mi Lee G, Einfeld DA, Kovesdi I, Wickham TJ (1999) Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571

    Article  PubMed  CAS  Google Scholar 

  24. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR (1993) Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319

    Article  PubMed  CAS  Google Scholar 

  25. Wang K, Huang S, Kapoor-Munshi A, Nemerow G (1998) Adenovirus internalization and infection require dynamin. J Virol 72:3455–3458

    PubMed  CAS  Google Scholar 

  26. Greber UF, Willetts M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    Article  PubMed  CAS  Google Scholar 

  27. Mathis JM, Stoff-Khalili MA, Curiel DT (2005) Oncolytic adenoviruses - selective retargeting to tumor cells. Oncogene 24:7775–7791

    Article  PubMed  CAS  Google Scholar 

  28. Koivunen E, Wang B, Ruoslahti E (1995) Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Biotechnology (NY) 13:265–270

    Article  CAS  Google Scholar 

  29. Pasqualini R, Koivunen E, Ruoslahti E (1997) Alpha v integrins as receptors for tumor targeting by circulating ligands. Nat Biotechnol 15:542–546

    Article  PubMed  CAS  Google Scholar 

  30. Kasono K, Blackwell JL, Douglas JT, Dmitriev I, Strong TV, Reynolds P, Kropf DA, Carroll WR, Peters GE, Bucy RP, Curiel DT, Krasnykh V (1999) Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res 5:2571–2579

    PubMed  CAS  Google Scholar 

  31. Vanderkwaak TJ, Wang M, Gomez-Navarro J, Rancourt C, Dmitriev I, Krasnykh V, Barnes M, Siegal GP, Alvarez R, Curiel DT (1999) An advanced generation of adenoviral vectors selectively enhances gene transfer for ovarian cancer gene therapy approaches. Gynecol Oncol 74:227–234

    Article  PubMed  CAS  Google Scholar 

  32. Wesseling JG, Bosma PJ, Krasnykh V, Kashentseva EA, Blackwell JL, Reynolds PN, Li H, Parameshwar M, Vickers SM, Jaffee EM, Huibregtse K, Curiel DT, Dmitriev I (2001) Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Ther 8:969–976

    Article  PubMed  CAS  Google Scholar 

  33. Hay CM, De Leon H, Jafari JD, Jakubczak JL, Mech CA, Hallenbeck PL, Powell SK, Liau G, Stevenson SC (2001) Enhanced gene transfer to rabbit jugular veins by an adenovirus containing a cyclic RGD motif in the HI loop of the fiber knob. J Vasc Res 38:315–323

    Article  PubMed  CAS  Google Scholar 

  34. Smith T, Idamakanti N, Kylefjord H, Rollence M, King L, Kaloss M, Kaleko M, Stevenson SC (2002) In vivo hepatic adenoviral gene delivery occurs independently of the coxsackievirus-adenovirus receptor. Mol Ther 5:770–779

    Article  PubMed  CAS  Google Scholar 

  35. Mizuguchi H, Koizumi N, Hosono T, Ishii-Watabe A, Uchida E, Utoguchi N, Watanabe Y, Hayakawa T (2002) CAR- or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Ther 9:769–776

    Article  PubMed  CAS  Google Scholar 

  36. Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA (1990) Integrin distribution in malignant melanoma: association of the beta 3 subunit with tumor progression. Cancer Res 50:6757–6764

    PubMed  CAS  Google Scholar 

  37. Gladson CL, Cheresh DA (1991) Glioblastoma expression of vitronectin and the alpha v beta 3 integrin. Adhesion mechanism for transformed glial cells. J Clin Invest 88:1924–1932

    Article  PubMed  CAS  Google Scholar 

  38. You Z, Fischer DC, Tong X, Hasenburg A, Aguilar-Cordova E, Kieback DG (2001) Coxsackievirus-adenovirus receptor expression in ovarian cancer cell lines is associated with increased adenovirus transduction efficiency and transgene expression. Cancer Gene Ther 8:168–175

    Article  PubMed  CAS  Google Scholar 

  39. Suzuki K, Fueyo J, Krasnykh V, Reynolds PN, Curiel DT, Alemany R (2001) A conditionally replicative adenovirus with enhanced infectivity shows improved oncolytic potency. Clin Cancer Res 7:120–126

    PubMed  CAS  Google Scholar 

  40. Douglas JT, Kim M, Sumerel LA, Carey DE, Curiel DT (2001) Efficient oncolysis by a replicating adenovirus (ad) in vivo is critically dependent on tumor expression of primary ad receptors. Cancer Res 61:813–817

    PubMed  CAS  Google Scholar 

  41. Lamfers ML, Grill J, Dirven CM, Van Beusechem VW, Geoerger B, Van Den Berg J, Alemany R, Fueyo J, Curiel DT, Vassal G, Pinedo HM, Vandertop WP, Gerritsen WR (2002) Potential of the conditionally replicative adenovirus Ad5-Delta24RGD in the treatment of malignant gliomas and its enhanced effect with radiotherapy. Cancer Res 62:5736–5742

    PubMed  CAS  Google Scholar 

  42. Fueyo J, Alemany R, Gomez-Manzano C, Fuller GN, Khan A, Conrad CA, Liu TJ, Jiang H, Lemoine MG, Suzuki K, Sawaya R, Curiel DT, Yung WK, Lang FF (2003) Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway. J Natl Cancer Inst 95:652–660

    Article  PubMed  CAS  Google Scholar 

  43. Lam JT, Bauerschmitz GJ, Kanerva A, Barker SD, Straughn JM, Wang M, Barnes MN, Blackwell JL, Siegal GP, Alvarez RD, Curiel DT, Hemminki A (2003) Replication of an integrin targeted conditionally replicating adenovirus on primary ovarian cancer spheroids. Cancer Gene Ther 10:377–387

    Article  PubMed  CAS  Google Scholar 

  44. Bauerschmitz GJ, Kanerva A, Wang M, Herrmann I, Shaw DR, Strong TV, Desmond R, Rein DT, Dall P, Curiel DT, Hemminki A (2004) Evaluation of a selectively oncolytic adenovirus for local and systemic treatment of cervical cancer. Int J Cancer 111:303–309

    Article  PubMed  CAS  Google Scholar 

  45. Bauerschmitz GJ, Lam JT, Kanerva A, Suzuki K, Nettelbeck DM, Dmitriev I, Krasnykh V, Mikheeva GV, Barnes MN, Alvarez RD, Dall P, Alemany R, Curiel DT, Hemminki A (2002) Treatment of ovarian cancer with a tropism modified oncolytic adenovirus. Cancer Res 62:1266–1270

    PubMed  CAS  Google Scholar 

  46. Vogels R, Zuijdgeest D, van Rijnsoever R, Hartkoorn E, Damen I, de Bethune MP, Kostense S, Penders G, Helmus N, Koudstaal W, Cecchini M, Wetterwald A, Sprangers M, Lemckert A, Ophorst O, Koel B, van Meerendonk M, Quax P, Panitti L, Grimbergen J, Bout A, Goudsmit J, Havenga M (2003) Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77:8263–8271

    Article  PubMed  CAS  Google Scholar 

  47. Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Soutar DS, Otto R, Robertson AG, Park O, Gulley ML, Heise C, Von Hoff DD, Kaye SB (2000) A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 6:798–806

    PubMed  CAS  Google Scholar 

  48. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, McCarty T, Landers S, Maples P, Romel L, Randlev B, Reid T, Kaye S, Kirn D (2000) Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55 kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 60:6359–6366

    PubMed  CAS  Google Scholar 

  49. Nemunaitis J, Cunningham C, Buchanan A, Blackburn A, Edelman G, Maples P, Netto G, Tong A, Randlev B, Olson S, Kirn D (2001) Intravenous infusion of a replication-selective adenovirus (ONYX-015) in cancer patients: safety, feasibility and biological activity. Gene Ther 8:746–759

    Article  PubMed  CAS  Google Scholar 

  50. Wu JT, Kirn DH, Wein LM (2004) Analysis of a three-way race between tumor growth, a replication-competent virus and an immune response. Bull Math Biol 66:605–625

    Article  PubMed  Google Scholar 

  51. Chen P, Kovesdi I, Bruder JT (2000) Effective repeat administration with adenovirus vectors to the muscle. Gene Ther 7:587–595

    Article  PubMed  CAS  Google Scholar 

  52. Seshidhar Reddy P, Ganesh S, Limbach MP, Brann T, Pinkstaff A, Kaloss M, Kaleko M, Connelly S (2003) Development of adenovirus serotype 35 as a gene transfer vector. Virology 311:384–393

    Article  PubMed  CAS  Google Scholar 

  53. Gao W, Robbins PD, Gambotto A (2003) Human adenovirus type 35: nucleotide sequence and vector development. Gene Ther 10:1941–1949

    Article  PubMed  CAS  Google Scholar 

  54. Holterman L, Vogels R, van der Vlugt R, Sieuwerts M, Grimbergen J, Kaspers J, Geelen E, van der Helm E, Lemckert A, Gillissen G, Verhaagh S, Custers J, Zuijdgeest D, Berkhout B, Bakker M, Quax P, Goudsmit J, Havenga M (2004) Novel replication-incompetent vector derived from adenovirus type 11 (Ad11) for vaccination and gene therapy: low seroprevalence and non-cross-reactivity with Ad5. J Virol 78:13207–13215

    Article  PubMed  CAS  Google Scholar 

  55. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Liu B, Wang M, Desmond RA, Keriel A, Barnett B, Baker HJ, Siegal GP, Curiel DT (2003) A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 7:163–173

    Article  PubMed  CAS  Google Scholar 

  56. Le LP, Li J, Ternovoi VV, Siegal GP, Curiel DT (2005) Fluorescently tagged canine adenovirus via modification with protein IX-enhanced green fluorescent protein. J Gen Virol 86:3201–3208

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Y, Bergelson JM (2005) Adenovirus receptors. J Virol 79:12125–12131

    Article  PubMed  CAS  Google Scholar 

  58. Iacobelli-Martinez M, Nepomuceno RR, Connolly J, Nemerow GR (2005) CD46-utilizing adenoviruses inhibit C/EBPbeta-dependent expression of proinflammatory cytokines. J Virol 79:11259–11268

    Article  PubMed  CAS  Google Scholar 

  59. Parks R, Evelegh C, Graham F (1999) Use of helper-dependent adenoviral vectors of alternative serotypes permits repeat vector administration. Gene Ther 6:1565–1573

    Article  PubMed  CAS  Google Scholar 

  60. Roy S, Shirley PS, McClelland A, Kaleko M (1998) Circumvention of immunity to the adenovirus major coat protein hexon. J Virol 72:6875–6879

    PubMed  CAS  Google Scholar 

  61. Wu H, Dmitriev I, Kashentseva E, Seki T, Wang M, Curiel DT (2002) Construction and characterization of adenovirus serotype 5 packaged by serotype 3 hexon. J Virol 76:12775–12782

    Article  PubMed  CAS  Google Scholar 

  62. O’Riordan CR, Lachapelle A, Delgado C, Parkes V, Wadsworth SC, Smith AE, Francis GE (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358

    Article  PubMed  CAS  Google Scholar 

  63. Romanczuk H, Galer CE, Zabner J, Barsomian G, Wadsworth SC, O’Riordan CR (1999) Modification of an adenoviral vector with biologically selected peptides: a novel strategy for gene delivery to cells of choice. Hum Gene Ther 10:2615–2626

    Article  PubMed  CAS  Google Scholar 

  64. Croyle MA, Chirmule N, Zhang Y, Wilson JM (2001) “Stealth” adenoviruses blunt cell-mediated and humoral immune responses against the virus and allow for significant gene expression upon readministration in the lung. J Virol 75:4792–4801

    Article  PubMed  CAS  Google Scholar 

  65. Croyle MA, Chirmule N, Zhang Y, Wilson JM (2002) PEGylation of E1-deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther 13:1887–1900

    Article  PubMed  CAS  Google Scholar 

  66. Mok H, Palmer DJ, Ng P, Barry MA (2005) Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 11:66–79

    Article  PubMed  CAS  Google Scholar 

  67. Green NK, Herbert CW, Hale SJ, Hale AB, Mautner V, Harkins R, Hermiston T, Ulbrich K, Fisher KD, Seymour LW (2004) Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther 11:1256–1263

    Article  PubMed  CAS  Google Scholar 

  68. Seymour LW, Fisher KD, Green NK, Hale SJ, Lyons M, Mautner V, Nicum S, Onion D, Oupicky D, Stevenson M, Ulbrich K (2003) Adenovirus retargeting and systemic delivery. Ernst Schering Res Found Workshop:107–114

  69. Alemany R, Suzuki K, Curiel DT (2000) Blood clearance rates of adenovirus type 5 in mice. J Gen Virol 81:2605–2609

    PubMed  CAS  Google Scholar 

  70. Ogawara K, Rots MG, Kok RJ, Moorlag HE, Van Loenen AM, Meijer DK, Haisma HJ, Molema G (2004) A novel strategy to modify adenovirus tropism and enhance transgene delivery to activated vascular endothelial cells in vitro and in vivo. Hum Gene Ther 15:433–443

    Article  PubMed  CAS  Google Scholar 

  71. Chillon M, Lee JH, Fasbender A, Welsh MJ (1998) Adenovirus complexed with polyethylene glycol and cationic lipid is shielded from neutralizing antibodies in vitro. Gene Ther 5:995–1002

    Article  PubMed  CAS  Google Scholar 

  72. Eto Y, Gao JQ, Sekiguchi F, Kurachi S, Katayama K, Mizuguchi H, Hayakawa T, Tsutsumi Y, Mayumi T, Nakagawa S (2004) Neutralizing antibody evasion ability of adenovirus vector induced by the bioconjugation of methoxypolyethylene glycol succinimidyl propionate (MPEG-SPA). Biol Pharm Bull 27:936–938

    Article  PubMed  CAS  Google Scholar 

  73. Akalu A, Liebermann H, Bauer U, Granzow H, Seidel W (1999) The subgenus-specific C-terminal region of protein IX is located on the surface of the adenovirus capsid. J Virol 73:6182–6187

    PubMed  CAS  Google Scholar 

  74. Rosa-Calatrava M, Grave L, Puvion-Dutilleul F, Chatton B, Kedinger C (2001) Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 75:7131–7141

    Article  PubMed  CAS  Google Scholar 

  75. Parks RJ (2005) Adenovirus protein IX: a new look at an old protein. Mol Ther 11:19–25

    Article  PubMed  CAS  Google Scholar 

  76. Vellinga J, Van der Heijdt S, Hoeben RC (2005) The adenovirus capsid: major progress in minor proteins. J Gen Virol 86:1581–1588

    Article  PubMed  CAS  Google Scholar 

  77. Dmitriev IP, Kashentseva EA, Curiel DT (2002) Engineering of adenovirus vectors containing heterologous peptide sequences in the C terminus of capsid protein IX. J Virol 76:6893–6899

    Article  PubMed  CAS  Google Scholar 

  78. Li J, Le L, Sibley DA, Mathis JM, Curiel DT (2005) Genetic incorporation of HSV-1 thymidine kinase into the adenovirus protein IX for functional display on the virion. Virology 338:247–258

    Article  PubMed  CAS  Google Scholar 

  79. Meulenbroek RA, Sargent KL, Lunde J, Jasmin BJ, Parks RJ (2004) Use of adenovirus protein IX (pIX) to display large polypeptides on the virion—generation of fluorescent virus through the incorporation of pIX-GFP. Mol Ther 9:617–624

    Article  PubMed  CAS  Google Scholar 

  80. Le LP, Everts M, Dmitriev IP, Davydova JG, Yamamoto M, Curiel DT (2004) Fluorescently labeled adenovirus with pIX-EGFP for vector detection. Mol Imaging 3:105–116

    Article  PubMed  CAS  Google Scholar 

  81. Peters T (1996) All about albumin: biochemistry, genetics, and medical applications. Academic, San Diego

    Google Scholar 

  82. Osborn BL, Sekut L, Corcoran M, Poortman C, Sturm B, Chen G, Mather D, Lin HL, Parry TJ (2002) Albutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur J Pharmacol 456:149–158

    Article  PubMed  CAS  Google Scholar 

  83. Halpern W, Riccobene TA, Agostini H, Baker K, Stolow D, Gu ML, Hirsch J, Mahoney A, Carrell J, Boyd E, Grzegorzewski KJ (2002) Albugranin, a recombinant human granulocyte colony stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoietic effects in mice and monkeys. Pharm Res 19:1720–1729

    Article  PubMed  CAS  Google Scholar 

  84. Yeh P, Landais D, Lemaitre M, Maury I, Crenne JY, Becquart J, Murry-Brelier A, Boucher F, Montay G, Fleer R, et al (1992) Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci USA 89:1904–1908

    Article  PubMed  CAS  Google Scholar 

  85. Osborn BL, Olsen HS, Nardelli B, Murray JH, Zhou JX, Garcia A, Moody G, Zaritskaya LS, Sung C (2002) Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther 303:540–548

    Article  PubMed  CAS  Google Scholar 

  86. hgsi, http://www.hgsi.com/products/albuferon.html

Download references

Acknowledgements

Drs. David T. Curiel and Imre Kovesdi are equity holders in VectorLogics, Inc. The following work was supported in part by the Department of Defense grant #W81XWH-05-1-0035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imre Kovesdi.

Additional information

This article is a symposium paper from the Annual Meeting of the "International Society for Cell and Gene Therapy of Cancer", held in Shenzhen, China, on 9–11 December 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedley, S.J., Chen, J., Mountz, J.D. et al. Targeted and shielded adenovectors for cancer therapy. Cancer Immunol Immunother 55, 1412–1419 (2006). https://doi.org/10.1007/s00262-006-0158-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0158-2

Keywords

Navigation