Skip to main content

Advertisement

Log in

Low TCR avidity and lack of tumor cell recognition in CD8+ T cells primed with the CEA-analogue CAP1-6D peptide

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The use of “altered peptide ligands” (APL), epitopes designed for exerting increased immunogenicity as compared with native determinants, represents nowadays one of the most utilized strategies for overcoming immune tolerance to self-antigens and boosting anti-tumor T cell-mediated immune responses. However, the actual ability of APL-primed T cells to cross-recognize natural epitopes expressed by tumor cells remains a crucial concern. In the present study, we show that CAP1-6D, a superagonist analogue of a carcinoembriyonic antigen (CEA)-derived HLA-A*0201-restricted epitope widely used in clinical setting, reproducibly promotes the generation of low-affinity CD8+ T cells lacking the ability to recognized CEA-expressing colorectal carcinoma (CRC) cells. Short-term T cell cultures, obtained by priming peripheral blood mononuclear cells from HLA-A*0201+ healthy donors or CRC patients with CAP1-6D, were indeed found to heterogeneously cross-react with saturating concentrations of the native peptide CAP1, but to fail constantly lysing or recognizing through IFN- γ release CEA+CRC cells. Characterization of anti-CAP1-6D T cell avidity, gained through peptide titration, CD8-dependency assay, and staining with mutated tetramers (D227K/T228A), revealed that anti-CAP1-6D T cells exerted a differential interaction with the two CEA epitopes, i.e., displaying high affinity/CD8-independency toward the APL and low affinity/CD8-dependency toward the native CAP1 peptide. Our data demonstrate that the efficient detection of self-antigen expressed by tumors could be a feature of high avidity CD8-independent T cells, and underline the need for extensive analysis of tumor cross-recognition prior to any clinical usage of APL as anti-cancer vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APL:

Altered peptide ligands

CEA:

Carcinoembriyonic antigen

CRC:

Colo-rectal carcinoma

References

  1. Babatz J, Rollig C, Lobel B, Folprecht G, Haack M, Gunther H, Kohne CH, Ehninger G, Schmitz M, Bornhauser M (2006) Induction of cellular immune responses against carcinoembryonic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. Cancer Immunol Immunother 55:268–276

    Article  PubMed  CAS  Google Scholar 

  2. Bielekova B, Goodwin B, Richert N, Cortese I, Kondo T, Afshar G, Gran B, Eaton J, Antel J, Frank JA, McFarland HF, Martin R (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6:1167–1175

    Article  PubMed  CAS  Google Scholar 

  3. Chen JL, Stewart-Jones G, Bossi G, Lissin NM, Wooldridge L, Choi EM, Held G, Dunbar PR, Esnouf RM, Sami M, Boulter JM, Rizkallah P, Renner C, Sewell A, van der Merwe PA, Jakobsen BK, Griffiths G, Jones EY, Cerundolo V (2005) Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J Exp Med 201:1243–1255

    Article  PubMed  CAS  Google Scholar 

  4. Choi EM, Chen JL, Wooldridge L, Salio M, Lissina A, Lissin N, Hermans IF, Silk JD, Mirza F, Palmowski MJ, Dunbar PR, Jakobsen BK, Sewell AK, Cerundolo V (2003) High avidity antigen-specific CTL identified by CD8-independent tetramer staining. J Immunol 171:5116–5123

    PubMed  CAS  Google Scholar 

  5. Clay TM, Custer MC, McKee MD, Parkhurst M, Robbins PF, Kerstann K, Wunderlich J, Rosenberg SA, Nishimura MI (1999) Changes in the fine specificity of gp100(209–217)-reactive T cells in patients following vaccination with a peptide modified at an HLA-A2.1 anchor residue. J Immunol 162:1749–1755

    PubMed  CAS  Google Scholar 

  6. Daniels MA, Jameson SC (2000) Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 191:335–346

    Article  PubMed  CAS  Google Scholar 

  7. Delon J, Gregoire C, Malissen B, Darche S, Lemaitre F, Kourilsky P, Abastado JP, Trautmann A (1998) CD8 expression allows T cell signaling by monomeric peptide-MHC complexes. Immunity 9:467–473

    Article  PubMed  CAS  Google Scholar 

  8. Dutoit V, Taub RN, Papadopoulos KP, Talbot S, Keohan ML, Brehm M, Gnjatic S, Harris PE, Bisikirska B, Guillaume P, Cerottini JC, Hesdorffer CS, Old LJ, Valmori D (2002) Multiepitope CD8(+) T cell response to a NY-ESO-1 peptide vaccine results in imprecise tumor targeting. J Clin Invest 110:1813–1822

    Article  PubMed  CAS  Google Scholar 

  9. Engelhorn ME, Guevara-Patino JA, Noffz J, Hooper AT, Lou O, Gold JS, Kappel BJ, Houghton AN (2006) Autoimmunity and tumor immunity induced by immune responses to mutations in self. Nat Med 12:198–206

    Article  PubMed  CAS  Google Scholar 

  10. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809–8814

    Article  PubMed  CAS  Google Scholar 

  11. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81

    Article  PubMed  CAS  Google Scholar 

  12. Hennecke J, Wiley DC (2001) T cell receptor-MHC interactions up close. Cell 104:1–4

    Article  PubMed  CAS  Google Scholar 

  13. Huppa JB, Davis MM (2003) T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3:973

    Article  PubMed  CAS  Google Scholar 

  14. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neuman A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LJ, Knuth A (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198–12203

    Article  PubMed  CAS  Google Scholar 

  15. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27(12):3135–3142

    Article  PubMed  CAS  Google Scholar 

  16. Kim M, Moon HB, Kim K, Lee KY (2006) Antigen dose governs the shaping of CTL repertoires in vitro and in vivo. Int Immunol 18:435–444

    Article  PubMed  CAS  Google Scholar 

  17. Liu KJ, Wang CC, Chen LT, Cheng AL, Wu YC, Yu WL, Hung YM, Yang HY, Juang SH, Whang-Peng J (2004) Generation of carcinoembryonic antigen (CEA)-specific T-cell responses in HLA-A*0201 and HLA-A*2402 late-stage colorectal cancer patients after vaccination with dendritic cells loaded with CEA peptides Clin Cancer Res 10:2645–2651

    Article  PubMed  CAS  Google Scholar 

  18. Marchand M, Baren VB, Weynants P, Brichard V, Dreno B, Tessier MH, Rankin E, Parmiani G, Arienti F, Humblet Y, Bourlond A, Vanwijck R, Lienard D, Beauduin M, Dietrich PY, Russo V, Kerger J, Masucci G, Jager E, De Greve J, Atzpodien J, Brasseur F, Coulie PG, Van Der Bruggen P, Boon T (1999) Tumor regressions observed in patients with metastatic melanoma treated with an antigen peptide encoded by MAGE-3 and presented by HLA-A1. Int J Cancer 80:219–230

    Article  PubMed  CAS  Google Scholar 

  19. Marincola FM, Wang E, Herlyn M, Seliger B, Ferrone S (2003) Tumors as elusive targets of T-cell-based active immunotherapy. Trends Immunol 24:335–342

    Article  PubMed  CAS  Google Scholar 

  20. Marshall JL, Gulley JL, Arlen PM, Beetham PK, Tsang KY, Slack R, Hodge JW, Doren S, Grosenbach DW, Hwang J, Fox E, Odogwu L, Park S, Panicali D, Schlom J (2005) Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas. J Clin Oncol 23:720–731

    Article  PubMed  CAS  Google Scholar 

  21. McKee MD, Roszkowski JJ, Nishimura MI (2005) T cell avidity and tumor recognition: implications and therapeutic strategies. J Transl Med 3:35

    Article  PubMed  Google Scholar 

  22. Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Tsuda N, Tanaka S, Shomura H, Katagiri K, Rikimaru T, Shichijo S, Kamura T, Hashimoto T, Shirouzu K, Yamada A, Todo S, Itoh K, Yamana H (2004) Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses. Clin Cancer Res 10:929–937

    Article  PubMed  CAS  Google Scholar 

  23. Morahan G, Allison J, Miller JF (1989) Tolerance of class I histocompatibility antigens expressed extrathymically. Nature 339:622–624

    Article  PubMed  CAS  Google Scholar 

  24. Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME, Lyerly HK (1999) Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5:1331–1338

    PubMed  CAS  Google Scholar 

  25. Morse MA, Clay TM, Hobeika AC, Osada T, Khan S, Chui S, Niedzwiecki D, Panicali D, Schlom J, Lyerly HK (2005) Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules. Clin Cancer Res 11:3017–3024

    Article  PubMed  CAS  Google Scholar 

  26. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Article  PubMed  CAS  Google Scholar 

  27. Oh S, Hodge JW, Ahlers JD, Burke DS, Schlom J, Berzofsky JA (2003) Selective induction of high avidity CTL by altering the balance of signals from APC. J Immunol 170:2523–2530

    PubMed  CAS  Google Scholar 

  28. Overwijk WW (2005) Breaking tolerance in cancer immunotherapy: time to ACT. Curr Opin Immunol 17:187–194

    Article  PubMed  CAS  Google Scholar 

  29. Parkhurst MR, Salgaller ML, Southwood S, Robbins PF, Sette A, Rosenberg SA, Kawakami Y (1996) Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues. J Immunol 157:2539–2548

    PubMed  CAS  Google Scholar 

  30. Pittet MJ, Rubio-Godoy V, Bioley G, Guillaume P, Batard P, Speiser D, Luescher I, Cerottini JC, Romero P, Zippelius A (2003) Alpha 3 domain mutants of peptide/MHC class I multimers allow the selective isolation of high avidity tumor-reactive CD8 T cells. J Immunol 171:1844–1849

    PubMed  CAS  Google Scholar 

  31. Purbhoo MA, Boulter JM, Price DA, Vuidepot AL, Hourigan CS, Dunbar PR, Olson K, Dawson SJ, Phillips RE, Jakobsen BK, Bell JI, Sewell AK (2001) The human CD8 coreceptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor zeta chain. J Biol Chem 276:32786–32792

    Article  PubMed  CAS  Google Scholar 

  32. Rivoltini L, Squarcina P, Loftus DJ, Castelli C, Tarsini P, Mazzocchi A, Rini F, Viaggiano V, Belli F, Permiani G (1999) A superagonist variant of peptide MART1/Melan A27–35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implication for more effective immunotherapy. Cancer Res 59:301–306

    PubMed  CAS  Google Scholar 

  33. Rivoltini L, Castelli C, Carrabba M, Mazzaferro V, Pilla L, Huber V, Coppa J, Gallino G, Scheibenbogen C, Squarcina P, Cova A, Camerini R, Lewis JJ, Srivastava PK, Parmiani G (2003) Human tumor-derived heat shock protein 96 mediates in vitro activation and in vivo expansion of melanoma—and colon carcinoma-specific T cells. J Immunol 171:3467–3474

    PubMed  CAS  Google Scholar 

  34. Rivoltini L, Canese P, Huber V, Iero M, Pilla L, Valenti R, Fais S, Lozupone F, Casati C, Castelli C, Parmiani G (2005) Escape strategies and reasons for failure in the interaction between tumour cells and the immune system: how can we tilt the balance towards immune-mediated cancer control? Expert Opin Biol Ther 5:463–476

    Article  PubMed  CAS  Google Scholar 

  35. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  36. Salazar E, Zaremba S, Arlen PM, Tsang KY, Schlom J (2000) Agonist peptide from a cytotoxic t-lymphocyte epitope of human carcinoembryonic antigen stimulates production of tc1-type cytokines and increases tyrosine phosphorylation more efficiently than cognate peptide. Int J Cancer 85:829–838

    Article  PubMed  CAS  Google Scholar 

  37. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179:1109–1118

    Article  PubMed  CAS  Google Scholar 

  38. Sato Y, Maeda Y, Shomura H, Sasatomi T, Takahashi M, Une Y, Kondo M, Shinohara T, Hida N, Katagiri K, Sato K, Sato M, Yamada A, Yamana H, Harada M, Itoh K, Todo S (2004) A phase I trial of cytotoxic T-lymphocyte precursor-oriented peptide vaccines for colorectal carcinoma patients. Br J Cancer 90:1334–1342

    Article  PubMed  CAS  Google Scholar 

  39. Slansky JE, Rattis FM, Boyd LF, Fahmy T, Jaffee EM, Schneck JP, Margulies DH, Pardoll DM (2000) Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13:529–538

    Article  PubMed  CAS  Google Scholar 

  40. Snyder JT, Alexander-Miller MA, Berzofsky JA, Belyakov IM (2003) Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 1:287

    Article  PubMed  CAS  Google Scholar 

  41. Stuge TB, Holmes SP, Saharan S, Tuettenberg A, Roederer M, Weber JS, Lee PP (2004) Diversity and recognition efficiency of T cell responses to cancer. PLoS Med 1:e28

    Article  PubMed  Google Scholar 

  42. Tangri S, Ishioka GY, Huang X, Sidney J, Southwood S, Fikes J, Sette A (2001) Structural features of peptide analogs of human histocompatibility leukocyte antigen class I epitopes that are more potent and immunogenic than wild-type peptide. J Exp Med 194:833–846

    Article  PubMed  CAS  Google Scholar 

  43. Tosi D, Valenti R, Cova A, Sovena G, Huber V, Pilla L, Arienti F, Belardelli F, Parmiani G, Rivoltini R (2004) Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens. J Immunol 172:5363–5370

    PubMed  CAS  Google Scholar 

  44. Trojan A, Witzens M, Schultze JL, Vonderheide RH, Harig S, Krackhardt AM, Stahel RA, Gribben JG (2001) Generation of cytotoxic T lymphocytes against native and altered peptides of human leukocyte antigen-A*0201 restricted epitopes from the human epithelial cell adhesion molecule. Cancer Res 61:4761–4765

    PubMed  CAS  Google Scholar 

  45. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990

    Article  PubMed  CAS  Google Scholar 

  46. Tsuruma T, Hata F, Torigoe T, Furuhata T, Idenoue S, Kurotaki T, Yamamoto M, Yagihashi A, Ohmura T, Yamaguchi K, Katsuramaki T, Yasoshima T, Sasaki K, Mizushima Y, Minamida H, Kimura H, Akiyama M, Hirohashi Y, Asanuma H, Tamura Y, Shimozawa K, Sato N, Hirata K (2004) Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer. J Transl Med 2:19

    Article  PubMed  Google Scholar 

  47. Valmori D, Fonteneau JF, Lizana CM, Gervois N, Lienard D, Rimoldi D, Jongeneel V, Jotereau F, Cerottini JC, Romero P (1998) Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol 160:1750–1758

    PubMed  CAS  Google Scholar 

  48. Yang S, Linette GP, Longerich S, Haluska FG (2002) Antimelanoma activity of CTL generated from peripheral blood mononuclear cells after stimulation with autologous dendritic cells pulsed with melanoma gp100 peptide G209–2M is correlated to TCR avidity. J Immunol 169:531–539

    PubMed  CAS  Google Scholar 

  49. Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997) Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res 57:4570–4577

    PubMed  CAS  Google Scholar 

  50. Zippelius A, Pittet MJ, Batard P, Rufer N, de Smedt M, Guillaume P, Ellefsen K, Valmori D, Lienard D, Plum J, MacDonald HR, Speiser DE, Cerottini JC, Romero P (2002) Thymic selection generates a large T cell pool recognizing a self-peptide in humans. J Exp Med 195:485–494

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr Jorgelina Coppa and Dr Vincenzo Mazzaferro (Unit of Liver Transplant, Istituto Nazionale Tumori) for providing patients’ blood samples, and Dr. Italia Bongarzone (Proteomics Laboratory, Istituto Nazionale Tumori) for performing mass-spectrometry analysis of peptide preparations. We are also grateful to Gloria Sovena and Agata Cova for the excellent technical support. Grant support: Grant from the European Community, VI Program, Cancer Immunotherapy Project, n°518234; Italian Ministry of Industry, University and Research (MIUR), grant FIRB # RBNE017B4C (Rome, Italy); Italian Association for Cancer Research (AIRC, Milan, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licia Rivoltini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iero, M., Squarcina, P., Romero, P. et al. Low TCR avidity and lack of tumor cell recognition in CD8+ T cells primed with the CEA-analogue CAP1-6D peptide. Cancer Immunol Immunother 56, 1979–1991 (2007). https://doi.org/10.1007/s00262-007-0342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0342-z

Keywords

Navigation