Skip to main content
Log in

Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objective

To investigate the clinical significance of the expression of the NKG2D ligands MICA/B and ULBP2 in ovarian cancer.

Methods

Eighty-two ovarian cancer patients and six patients without ovarian cancer from Department of Obstetrics and Gynecology of Kyoto University Hospital were enrolled in this study between 1993 and 2003. Expression of MICA/B, ULBP2, and CD57 in ovarian cancer tissue and normal ovary tissue was evaluated by immunohistochemical staining, and the relationship of these results to relevant clinical patient data was analyzed. Expression of MICs, ULBP2, and HLA-class I molecules in 33 ovarian cancer cell lines and two normal ovarian epithelial cell lines, as well as levels of soluble MICs and ULBP2 in the culture supernatants, were measured.

Results

Expression of MICA/B and ULBP2 was detected in 97.6 and 82.9% of ovarian cancer cells, respectively, whereas neither was expressed on normal ovarian epithelium. The expression of MICA/B in ovarian cancer was highly correlated with that of ULBP2. Strong expression of ULBP2 in ovarian cancer cells was correlated with less intraepithelial infiltration of T cells and bad prognoses for patients, suggesting that ULBP2 expression is a prognostic indicator in ovarian cancer. The expression of NKG2D ligands did not correlate with the levels of the soluble forms of the ligands.

Conclusions

High expression of ULBP2 is an indicator of poor prognosis in ovarian cancer and may relate to T cell dysfunction in the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  PubMed  CAS  Google Scholar 

  2. Busche A, Goldmann T, Naumann U, Steinle A, Brandau S (2006) Natural killer cell-mediated rejection of experimental human lung cancer by genetic overexpression of major histocompatibility complex class I chain-related gene A. Hum Gene Ther 17:135–146

    Article  PubMed  CAS  Google Scholar 

  3. Coudert JD, Scarpellino L, Gros F, Vivier E, Held W (2008) Sustained NKG2D engagement induces cross-tolerance of multiple distinct NK cell activation pathways. Blood 111(7):3571–3578

    Article  PubMed  CAS  Google Scholar 

  4. Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF (2001) MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 15:83–93

    Article  PubMed  CAS  Google Scholar 

  5. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413:165–171

    Article  PubMed  CAS  Google Scholar 

  6. Doubrovina ES, Doubrovin MM, Vider E et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    PubMed  CAS  Google Scholar 

  7. Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M, Friese MA (2006) TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129(Pt9):2416–2425

    Article  PubMed  Google Scholar 

  8. Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F, Buhring HJ, Dichgans J, Rammensee HG, Steinle A, Weller M (2003) MICA/NKG2D mediated immunogene therapy of experimental gliomas. Cancer Res 63:8996–9006

    PubMed  CAS  Google Scholar 

  9. Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450

    Article  PubMed  CAS  Google Scholar 

  10. Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial γδT cells. Science 279:1737–1740

    Article  PubMed  CAS  Google Scholar 

  11. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived γδT cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    Article  PubMed  CAS  Google Scholar 

  12. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  PubMed  CAS  Google Scholar 

  13. Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N, Honjo T, Fujii S (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci USA 104:3360–3365

    Article  PubMed  CAS  Google Scholar 

  14. Hayakawa Y, Kelly JM, Westwood JA, Darcy PK, Diefenbach A, Raulet D, Smyth MJ (2002) Cutting edge: tumor rejection mediated by NKG2D receptor ligand interaction is dependent upon perforin. J Immunol 169:5377–5381

    PubMed  CAS  Google Scholar 

  15. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih RH (2006) Soluble MICA in malignant diseases. Int J Cancer 118:684–687

    Article  PubMed  CAS  Google Scholar 

  16. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih RH (2006) Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 55:1284–1289

    Article  Google Scholar 

  17. Hsia JY, Chen JT, Chen CY, Hsu CP, Miaw J, Huang YS, Yang CY (2005) Prognostic significance of intratumoral natural killer cells in primary resected esophageal squamous cell carcinoma. Chang Gung Med J 28:335–340

    PubMed  Google Scholar 

  18. Huang JF, Yang Y, Sepulveda H, Shi W, Hwang I, Peterson PA, Jackson MR, Sprent J, Cai Z (1999) TCR-Mediated internalization of peptide–MHC complexes acquired by T cells. Science 286:952–954

    Article  PubMed  CAS  Google Scholar 

  19. Ishigami S, Natsugoe S, Tokuda K, Nakajo A, Che X, Iwashige H, Aridome K, Hokita S, Aikou T (2000) Prognostic value of intratumoral natural killer cells in gastric carcinoma. Cancer 88:577–583

    Article  PubMed  CAS  Google Scholar 

  20. Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH (2002) The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17:19–29

    Article  PubMed  CAS  Google Scholar 

  21. Lanier LL (2001) A renaissance for the tumor immunosurveillance hypothesis. Nat Med 7:1178–1180

    Article  PubMed  CAS  Google Scholar 

  22. Maccalli C, Pende D, Castelli C, Mingari MC, Robbins PF, Parmiani G (2003) NKG2D engagement of colorectal cancer-specific T cells strengthens TCR mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur J Immunol 33:2033–2043

    Article  PubMed  CAS  Google Scholar 

  23. McCann FE, Eissmann P, Onfelt B, Leung R, Davis DM (2007) The activating NKG2D ligand MHC class I-related chain A transfers from target cells to NK cells in a manner that allows functional consequences. J Immunol 178:3418–3426

    PubMed  CAS  Google Scholar 

  24. Oppenheim DE, Roberts SJ, Clarke SL et al (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937

    Article  PubMed  CAS  Google Scholar 

  25. Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S, Nanni M, Biassoni R, Bottino C, Moretta A, Moretta L (2001) Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31:1076–1086

    Article  PubMed  CAS  Google Scholar 

  26. Pende D, Rivera P, Marcenaro S, Chang CC, Biassoni R, Conte R, Kubin M, Cosman D, Ferrone S, Moretta L, Moretta A (2002) Major histocompatibility complex class I-related chainA and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D dependent natural killer cell cytotoxicity. Cancer Res 62:6178–6186

    PubMed  CAS  Google Scholar 

  27. Raulet DH (2003) Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 3:781–790

    Article  PubMed  CAS  Google Scholar 

  28. Rebmann V, Schutt P, Brandhorst D, Opalka B, Moritz T, Nowrousian MR, Grosse-Wilde H (2007) Soluble MICAs an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin Immunol 123:114–120

    Article  PubMed  CAS  Google Scholar 

  29. Roda-Navarro P, Vales-Gomez M, Chisholm SE, Reyburn HT (2006) Transfer of NKG2D and MICB at the cytotoxic NK cell immune synapse correlates with a reduction in NK cell cytotoxic function. Proc Natl Acad Sci USA 103:11258–11263

    Article  PubMed  CAS  Google Scholar 

  30. Salih HR, Rammensee HG, Steinle A (2002) Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J Immunol 169:4098–4102

    PubMed  CAS  Google Scholar 

  31. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  PubMed  CAS  Google Scholar 

  32. Song H, Kim JK, Cosman D, Choi I (2006) Soluble ULBP suppresses natural killer cell activity via down-regulating NKG2D expression. Cell Immunol 239:22–30

    Article  PubMed  CAS  Google Scholar 

  33. Steinle A, Groh V, Spies T (1998) Diversification, expression, and γδT cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules. Proc Natl Acad Sci USA 95:12510–12515

    Article  PubMed  CAS  Google Scholar 

  34. Vetter CS, Lieb W, Brocker E-B, Becker JC (2004) Loss of nonclassical MHC molecules MIC-A/B expression during progression of uveal melanoma. Br J Cancer 91:1495–1499

    PubMed  CAS  Google Scholar 

  35. Villegas FR, Coca S, Villarrubia VG, Jiménez R, Chillón MJ, Jareño J, Zuil M, Callol L (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 in patients with squamous cell lung cancer. Lung Cancer 35:23–28

    Article  PubMed  Google Scholar 

  36. Waldhauer I, Steinle A (2006) Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 66:2520–2526

    Article  PubMed  CAS  Google Scholar 

  37. Watson NF, Spendlove I, Madjd Z, McGilvray R, Green AR, Ellis IO, Scholefield JH, Durrant LG (2006) Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118:1445–1452

    Article  PubMed  CAS  Google Scholar 

  38. Wiemann K, Mittrücker HW, Feger U, Welte SA, Yokoyama WM, Spies T, Rammensee HG, Steinle A (2005) Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175:720–729

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Aoki, Keio University Japan; Dr. Saga, Jichi Medical University Japan; Dr. Hirahara, Yokohama City University Japan; Dr. Berchuck and Dr. Murphy, Duke University USA for kindly providing ovarian cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Mandai.

Additional information

This work was supported by grants from Grant-in-Aid for Scientific Research (19390426, 19591932, 18209052 and 19659421) from the Ministry of Education, Science, Sports, Culture and Technology of Japan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary table (DOC 62 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, K., Mandai, M., Hamanishi, J. et al. Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer: high expression of ULBP2 is an indicator of poor prognosis. Cancer Immunol Immunother 58, 641–652 (2009). https://doi.org/10.1007/s00262-008-0585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0585-3

Keywords

Navigation