Skip to main content
Log in

TNK cells (NKG2D+ CD8+ or CD4+ T lymphocytes) in the control of human tumors

  • Focussed Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Innate and adaptive immune responses have many interactions that are regulated by the balance of signals initiated by a variety of activatory and inhibitory receptors. Among these, the NKG2D molecule was identified as expressed by T lymphocytes, including most CD8+ cells and a minority of CD4+ cells, designated TNK cells in this paper. Tumor cells may overexpress the stress-inducible NKG2D ligands (NKG2DLs: MICA/B, ULBPs) and the NKG2D signaling has been shown to be involved in lymphocyte-mediated anti-tumor activity. Aberrant expression of NKG2DLs by cancer cells, such as the release of soluble form of NKG2DLs, can lead to the impairment of these immune responses. Here, we discuss the significance of NKG2D in TNK-mediated anti-tumor activity. Our studies demonstrate that NKG2D+ T cells (TNK) are commonly recruited at the tumor site in melanoma patients where they may exert anti-tumor activity by engaging both TCR and NKG2D. Moreover, NKG2D and TCR triggering was also observed by peripheral blood derived T lymphocyte- or T cell clone-mediated tumor recognition, both in melanoma and colorectal cancer (CRC) patients. Notably, heterogeneous expression of NKG2DLs was found in melanoma and CRC cells, with a decrease of these molecules along with tumor progression. Therefore, through the mechanisms that govern NKG2D engagement in anti-tumor activity and the expression of NKG2DLs by tumor cells that still need to be dissected, we showed that NKG2D expressing TNK cells are a relevant T cell subtype for immunosurveillance of tumors and we propose that new immunotherapeutic interventions for cancer patients should be aimed also at enhancing NKG2DLs expression by tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Alvaro T, Lejeune M, Salvadò MT et al (2005) Outcome in Hodgkin’s lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 11:1467

    Article  PubMed  Google Scholar 

  2. Ambrosino E, Terabe M, Halder RC et al (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179:5126

    PubMed  CAS  Google Scholar 

  3. Andersen L, Jensen H, Pedersen MT, Hansen KA, Skov S (2007) Molecular regulation of MHC class I-related chain A expression after HDAC-inhibitor treatment of Jurkat T cells. J Immunol 179:8235

    Google Scholar 

  4. Baxevanis CN, Gritzapis AD, Papamichail M (2003) In vivo antitumor activity of NKT cells activated by the combination of IL-12 and IL-18. J Immunol 171:2953

    PubMed  CAS  Google Scholar 

  5. Bauer S, Groh V, Wu J et al (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727

    Article  PubMed  CAS  Google Scholar 

  6. Berzowsky JA, Terabe M (2008) A novel immunoregulatory axis of NKT cell subset: regulating tumor immunity. Cancer Immunol Immunother 57:1679

    Article  Google Scholar 

  7. Castelli C, Tarsini P, Mazzocchi A et al (1999) Novel HLA-Cw8-restricted T cell epitopes derived from tyrosinase-related protein-2 and gp100 melanoma antigens. J Immunol 162:1739

    PubMed  CAS  Google Scholar 

  8. Cerwenka A, Baron JL, Lanier LL (2001) Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc Natl Acad Sci USA 98:11521

    Article  PubMed  CAS  Google Scholar 

  9. Chang DH, Osman K, Connolly J et al (2005) Sustained expansion of NKT cells and antigen-specific T cells after injection of α-galactosyl ceramide loaded mature dendritic cells in cancer patients. J Exp Med 201:1503

    Article  PubMed  CAS  Google Scholar 

  10. Clayton A, Mitchell JP, Court J, Linnane S, Mason MD, Tabi Z (2008) Human tumor-derived exosomes down-modulate NKG2D expression. J Immunol 180:7249

    PubMed  CAS  Google Scholar 

  11. Clemente C, Mihm MC, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303

    Article  PubMed  CAS  Google Scholar 

  12. Crowe NY, Coquet JM, Berzins SP et al (2005) Differential antitumor immunity mediated by NKT cell subsets in vivo. J Exp Med 202:1279

    Article  PubMed  CAS  Google Scholar 

  13. Curiel TJ, Coukos G, Zou L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med 10:942

    Article  PubMed  CAS  Google Scholar 

  14. Dhodapkar KM, Cirignano B, Chamian F et al (2004) Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor lytic activity following dendritic cell-mediated expansion. Int J Cancer 109:893

    Article  PubMed  CAS  Google Scholar 

  15. Diefenbach A, Jensen ER, Jamieson AM, Raulet DH (2001) Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Nature 413:165

    Article  PubMed  CAS  Google Scholar 

  16. Doubrovina ES, Doubrovin MM, Vider E et al (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891

    PubMed  CAS  Google Scholar 

  17. Dunn GP, Old LJ, Schreiber R (2004) The three Es of cancer immunoediting. Ann Rev Immunol 22:329

    Article  CAS  Google Scholar 

  18. Eagle RA, Traherne JA, Ashiru O, Wills MR, Trowsdale J (2006) Regulation of NKG2D ligand gene expression. Human Immunol 67:159

    Article  CAS  Google Scholar 

  19. Ebert EC, Groh V (2008) Dissection of spontaneous cytotoxicity by human intestinal intraepithelial lymphocytes: MIC on colon cancer triggers NKG2D-mediated lysis through Fas ligand. Immunology 124:33

    Article  PubMed  CAS  Google Scholar 

  20. Elsner L, Muppala V, Gehrmann M et al (2007) The heat shock protein HSP70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol 179:5523

    PubMed  CAS  Google Scholar 

  21. Fuertes MB, Girart MV, Molinero LL et al (2008) Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanoma confers immune privilege and prevents NK cell-mediated cytotoxicity. J Immunol 180:4606

    PubMed  CAS  Google Scholar 

  22. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960

    Article  PubMed  CAS  Google Scholar 

  23. Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186

    Article  PubMed  CAS  Google Scholar 

  24. Giaccone G, Punt CJ, Ando Y et al (2002) A phase I study of the natural killer T cell ligand α-galactosylceramide (KRN7000) in patients with solid tumors. Clin Cancer Res 8:3702

    PubMed  CAS  Google Scholar 

  25. Girart MV, Fuertes MB, Domaica CI, Rossi LE, Zwirner NW (2007) Engagement of TLR3, TLR7, and NKG2D regulate IFN-γ secretion but not NKG2D-mediated cytotoxicity by human NK cells stimulated with suboptimal doses of IL-12. J Immunol 179:3472

    PubMed  CAS  Google Scholar 

  26. Godfrey DI, Kronenberg M (2004) Going both ways: immune regulation via CD1d-dependent NKT. J Clin Invest 114:1379

    PubMed  CAS  Google Scholar 

  27. Gonzales S, Groh V, Spies T (2006) Immunobiology of human NKG2D and its ligands. Curr Top Microbiol Immunol 298:121

    Article  Google Scholar 

  28. Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879

    Article  PubMed  CAS  Google Scholar 

  29. Groh V, Wu J, Yee C, Spies T (2002) Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734

    Article  PubMed  CAS  Google Scholar 

  30. Hayakawa Y, Smyth MJ (2006) NKG2D and cytotoxic effector function in tumor immune surveillance. Semin Immunol 18:176

    Article  PubMed  CAS  Google Scholar 

  31. Houchins JP, Yabe T, McSherry C, Bach FH (1991) DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med 173:1017

    Article  PubMed  CAS  Google Scholar 

  32. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih RH (2006) Soluble MICB in malignant diseases: analysis of diagnostic significance and correlation with soluble MICA. Cancer Immunol Immunother 55:1284

    Article  Google Scholar 

  33. Hyka-Nouspikel N, Lucian L, Murphy E, McClanahan T, Phillips JH (2007) DAP10 deficiency breaks the immune tolerance against transplantable syngeneic melanoma. J Immunol 179:3763

    PubMed  CAS  Google Scholar 

  34. Konjevic G, Martinovic KM, Vuletic A et al (2007) Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis 24:1

    Article  PubMed  CAS  Google Scholar 

  35. Krockenberger M, Dombrowski Y, Weidler C et al (2008) Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol 180:7338

    PubMed  CAS  Google Scholar 

  36. Lee JC, Lee K-M, Kim D-W, Heo DS (2004) Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335

    PubMed  CAS  Google Scholar 

  37. Maccalli C, Pende D, Castelli C, Mingari MC, Robbins PF, Parmiani G (2003) NKG2D engagement of colorectal cancer-specific T cell strengthens TCR-mediated antigen stimulation and elicits TCR independent anti-tumor activity. Eur J Immunol 33:2033

    Article  PubMed  CAS  Google Scholar 

  38. Maccalli C, Nonaka D, Piris A et al (2007) NKG2D-mediated anti-tumor activity by TILs and antigen-specific T cell clones isolated from melanoma patients. Clin Cancer Res 13:7459

    Article  PubMed  CAS  Google Scholar 

  39. Madjd Z, Spendlove I, Moss R et al (2007) Upregulation of MICA on high-grade invasive operable breast carcinoma. Cancer Immun 7:17

    PubMed  Google Scholar 

  40. Moreno M, Molling JW, von Mensdorff-Pouilly S et al (2008) IFN-γ-producing human invariant NKT cells promote tumor-associated antigen-specific cytotoxic T cell responses. J Immunol 181:2446

    PubMed  CAS  Google Scholar 

  41. Nishio S, Yamada N, Ohyama H et al (2008) Enhanced suppression of pulmonary metastasis of malignant melanoma cells by combined administration of α-galactosylceramide and interleukin-18. Cancer Sci 99:113

    PubMed  CAS  Google Scholar 

  42. Osaki T, Saito H, Yoshikawa T et al (2007) Decreased NKG2D expression on CD8+ T cells is involved in immune evasion in patients with gastric cancer. Clin Cancer Res 13:382

    Article  PubMed  CAS  Google Scholar 

  43. Parmiani G (2005) Tumor-infiltrating T cells: friends or foes of neoplastic cells? New Engl J Med 353:2640

    Article  PubMed  Google Scholar 

  44. Pende D, Cantoni C, Rivera P et al (2001) Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumor of nonepithelial origin. Eur J Immunol 31:1076

    Article  PubMed  CAS  Google Scholar 

  45. Salih HR, Antropius H, Gieseke F et al (2003) Functional expression and release of ligands for activating immunoreceptor NKG2D in leukaemia. Blood 102:1389

    Article  PubMed  CAS  Google Scholar 

  46. Sato E, Olson SH, Ahn J et al (2005) Intraepithelial CD8+ tumor infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favourable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538

    Article  PubMed  CAS  Google Scholar 

  47. Schrama D, Terheyden P, Otto K et al (2006) Expression of the NKG2D ligand UL16 binding protein-1 (ULBP-1) on dendritic cells. E J Immunol 36:65

    Article  CAS  Google Scholar 

  48. Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S-I (2007) Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell-mediated immunity via dendritic cells. J Exp Med 204:2641

    Article  PubMed  CAS  Google Scholar 

  49. Silk JD, Hermans IF, Gileadi U et al (2004) Utilizing the adjuvant properties of CD1d-dependent NKT cells in T cell-mediated immunotherapy. J Clin Invest 114:1800

    PubMed  CAS  Google Scholar 

  50. Smyth MJ, Godfrey DJ, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nature Immunol 2:293

    Article  CAS  Google Scholar 

  51. Smyth MJ et al (2004) NKG2D recognition and perforin effector function mediate effective cytokine immunotherapy of cancer. J Exp Med 200(10):1325–1335

    Article  PubMed  CAS  Google Scholar 

  52. Speiser DE, Valmori D, Rimoldi D et al (1999) CD28-negative cytolytic effector T cells frequently express NK receptors and are present at variable proportions in circulating lymphocytes from healthy donors and melanoma patients. Eur J Immunol 29:1990

    Article  PubMed  CAS  Google Scholar 

  53. Tachibana T, Onodera H, Tsuruyama T et al (2005) Increased intratumor Vα-24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res 11:7322

    Article  PubMed  CAS  Google Scholar 

  54. Tang K-F, He C-X, Zeng G-L et al (2008) Induction of MHC class I-related chain B (MICB) by 5-aza-2′-deoxycytidine. Biochem Biophys Res Com 370:578

    Article  PubMed  CAS  Google Scholar 

  55. Unitt E, Marshall A, Gelson W et al (2006) Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 45:246

    Article  PubMed  CAS  Google Scholar 

  56. Vales-Gomez M, Chishlom SE, Cassady-Cain RL, Roda-navarro P, Reyburn HT (2008) Selective induction of expression of a ligand for the NKG2D receptor by proteasome inhibitors. Cancer Res 68:1546

    Article  PubMed  CAS  Google Scholar 

  57. Vetter CS, Groh V, thor Straten P, Spies T, Brocker E-B, Becker JC (2002) Expression of stress-induced MHC class I related chain molecules on human melanomas. J Invest Dermatol 118:60

    Article  Google Scholar 

  58. Vivier E, Tomasello E, Paul P (2002) Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition? Curr Opin Immunol 14:306

    Article  PubMed  CAS  Google Scholar 

  59. Wang E, Selleri S, Marincola FM (2007) The requirements for CTL-mediated rejection of cancer in human: NKG2D and its role in the immune responsiveness of melanoma. Clin Cancer Res 13:7228

    Article  PubMed  CAS  Google Scholar 

  60. Wang H, Yang D, Xu W, Wang Y, Ruan Z, Zhao T (2008) Tumor-derived soluble MICs impaired CD3+ CD56+ NKT-like cell cytotoxicity in cancer patient. Immunol Lett (in press)

  61. Watson NFS, Spendlove I, Madjd Z et al (2006) Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer 118:1445

    Article  PubMed  CAS  Google Scholar 

  62. Wiemann K, Mittrucker H-W, Feger U, Welte SA, Yokohama WM, Spies T (2005) Tumor-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. J Immunol 175:720

    PubMed  CAS  Google Scholar 

  63. Wu JD, Higgins LM, Steinle A, Cosman D, Haugh K, Plymate SR (2004) Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer. J Clin Invest 114:560

    PubMed  CAS  Google Scholar 

  64. Yokoyama WM (2002) Catch us if you can. Nature 419:679

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank our colleagues Drs. C. Castelli, D. Nonaka, A. Piris, L. Rivoltini (Istituto Nazionale Tumori, Milan), P. F. Robbins (Surgery Branch, NCI, NIH, Bethesda), D. Cosman (Amgen, Seattle), M. C. Mingari, D. Pende (Istituto Tumori Genoa), C. Doglioni, and L. Pilla (San Raffaele Scientific Institute, Milan) for their valuable collaboration in performing the studies, the results of which are summarized in this work. The authors’ work was supported by AIRC (Italian Association for Research on Cancer, Milan) and the Italian Ministry of Health, Rome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Parmiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccalli, C., Scaramuzza, S. & Parmiani, G. TNK cells (NKG2D+ CD8+ or CD4+ T lymphocytes) in the control of human tumors. Cancer Immunol Immunother 58, 801–808 (2009). https://doi.org/10.1007/s00262-008-0635-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0635-x

Keywords

Navigation