Skip to main content

Advertisement

Log in

Rejection of intradermally injected syngeneic tumor cells from mice by specific elimination of tumor-associated macrophages with liposome-encapsulated dichloromethylene diphosphonate, followed by induction of CD11b+/CCR3/Gr-1 cells cytotoxic against the tumor cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor cell expansion relies on nutrient supply, and oxygen limitation is central in controlling neovascularization and tumor spread. Monocytes infiltrate into tumors from the circulation along defined chemotactic gradients, differentiate into tumor-associated macrophages (TAMs), and then accumulate in the hypoxic areas. Elevated TAM density in some regions or overall TAM numbers are correlated with increased tumor angiogenesis and a reduced host survival in the case of various types of tumors. To evaluate the role of TAMs in tumor growth, we here specifically eliminated TAMs by in vivo application of dichloromethylene diphosphonate (DMDP)-containing liposomes to mice bearing various types of tumors (e.g., B16 melanoma, KLN205 squamous cell carcinoma, and 3LL Lewis lung cancer), all of which grew in the dermis of syngeneic mouse skin. When DMDP-liposomes were injected into four spots to surround the tumor on day 0 or 5 after tumor injection and every third day thereafter, both the induction of TAMs and the tumor growth were suppressed in a dose-dependent and injection number-dependent manner; and unexpectedly, the tumor cells were rejected by 12 injections of three times-diluted DMDP-liposomes. The absence of TAMs in turn induced the invasion of inflammatory cells into or around the tumors; and the major population of effector cells cytotoxic against the target tumor cells were CD11b+ monocytic macrophages, but not CCR3+ eosinophils or Gr-1+ neutrophils. These results indicate that both the absence of TAMs and invasion of CD11b+ monocytic macrophages resulted in the tumor rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AIM:

Allograft-induced macrophage

DMDP:

Dichloromethylene diphosphonate

E/T:

Effector/target

FACS:

Fluorescence-activated cell sorter

FCS:

Fetal calf serum

i.d.:

Intradermally

mAb:

Monoclonal antibody

PBS:

Phosphate-buffered saline

PE:

Phycoerythrin

TAMs:

Tumor-associated macrophages

References

  1. Ascher NL, Ferguson RM, Hoffman R, Simmons RL (1979) Partial characterization of cytotoxic cells infiltrating sponge matrix allografts. Transplantation 27:254–259

    Article  PubMed  CAS  Google Scholar 

  2. Bethwaite PB, Holloway LJ, Yeong ML, Thomton A (1993) Effect of tumor associated tissue eosinophilia on survival in women with stage 1B carcinoma of the uterine cervix. J Clin Pathol 46:1016–1020

    Article  PubMed  CAS  Google Scholar 

  3. Burton JL, Wells JM, Corke KP, Maitland N, Hamdy FC, Lewis CE (2000) Macrophages accumulate in avascular, hypoxic areas of prostate tumors: implications for the targeted therapeutic gene delivery to such sites. J Pathol 192:8A

    Google Scholar 

  4. Cario E, Formi G, Lollini P, Modesti A, Musiani P (2008) The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood 97:339–345

    Google Scholar 

  5. Collingridge DR, Hill SA, Chaplin DJ (2001) Proportion of infiltrating IgG-binding immune cells predict for tumor hypoxia. Br J Cancer 84:626–630

    Article  PubMed  CAS  Google Scholar 

  6. Delemarre FGA, Kors N, Kraal G, Van Rooijen N (1990) Repopulation of macrophages in popliteal lymph nodes of mice after liposome mediated depletion. J Leukoc Biol 47:251–257

    PubMed  CAS  Google Scholar 

  7. Engers HD, Glasebrook AL, Sorenson GD (1982) Allogeneic tumor rejection induced by the intravenous injection of Lyt-2+ cytotoxic T-lymphocyte clones. J Exp Med 156:1280–1285

    Article  PubMed  CAS  Google Scholar 

  8. Fauci AS, Harley JB, Roberts WC, Ferrans VJ, Gralnick HR, Bjornson BH (1982) NIH conference. The idiopathic hypereosinophilic syndrome. Clinical, pathophysiologic, and therapeutic considerations. Ann Intern Med 97:78–92

    PubMed  CAS  Google Scholar 

  9. Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, Aljama A (2000) Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer 88:1544–1548

    Article  PubMed  CAS  Google Scholar 

  10. Fleisch H (1989) Bisphosphonates: a new class of drugs in diseases of bone and calcium metabolism. Recent Results Cancer Res 116:1–28

    PubMed  CAS  Google Scholar 

  11. Goldsmith MM, Belchis DA, Cresson DH, Merritt WD, Askin FB (1992) The importance of the eosinophils in head and neck cancer. Otolaryngol Head Neck Surg 106:27–33

    PubMed  CAS  Google Scholar 

  12. Green MI, Fujimoto S, Sehon AH (1977) Regulation of the immune response to tumor antigens. III. Characterization of thymic suppressor factor(s) produced by tumor-bearing host. J Immunol 119:757–764

    Google Scholar 

  13. Isaacson NH, Rapoport P (1946) Eosinophilia in malignant tumors: its significance. Ann Intern Med 25:893–902

    CAS  PubMed  Google Scholar 

  14. Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, Sasano H (2006) Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res 26:1419–1424

    PubMed  Google Scholar 

  15. Krist LF, Kerremans M, Koenen H, Blijleven N, Eestermans IL, Calame W, Meyer S, Beelen RH (1995) Novel isolation and purification method permitting functional cytotoxicity studies of macrophages from milky spots in the greater omentum. J Immunol Methods 184:253–261

    Article  PubMed  CAS  Google Scholar 

  16. Lange P (1960) Clinical and histological studies on cervical carcinoma: precancerosis, early metastasis, and tubular structures in lymph nodes. Acta Pathol Microbiol Scand 50:1–162

    Google Scholar 

  17. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56:4625–4629

    PubMed  CAS  Google Scholar 

  18. Lewis C, Murdoch C (2005) Macrophage responses to hypoxia. Implications for tumor progression and anti-cancer therapies. Am J Pathol 167:627–635

    PubMed  CAS  Google Scholar 

  19. Moghimi SM, Patel HM (1988) Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol-rich liposomes. FEBS Lett 233:143–147

    Article  PubMed  CAS  Google Scholar 

  20. Morokata T, Suzuki K, Masunaga Y, Taguchi K, Morihira K, Sato I, Fujii M, Takizawa S, Torii Y, Yamamoto N, Kaneko M, Yamada T, Takahashi K, Shimizu Y (2006) A novel, selective, and orally available antagonist for CC chemokine receptor 3. J Pharmacol Exp Ther 317:244–250

    Article  PubMed  CAS  Google Scholar 

  21. Musiani P, Allione A, Modica A, Lollini PL, Giovarelli M, Cavallo F, Belardelli F, Forni G, Modesti A (1996) Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-α, IFN-γ, and TNF-α. Lab Invest 74:146–157

    PubMed  CAS  Google Scholar 

  22. Nakamura M, Shibazaki M, Nitta Y, Endo Y (1998) Translocation of platelets into Disse spaces and their entry into hepatocytes in response to lipopolysaccharides, interleukin-1 and tumor necrosis factor: the role of Kupffer cells. J Hepatol 28:991–999

    Article  PubMed  CAS  Google Scholar 

  23. Negus RP, Stamp GW, Hadley J, Balkwill FR (1997) Quantitative assessment of the leukocyte infiltrate in ovarian cancer and its relationship to the expression of C-C chemokines. Am J Pathol 150:1723–1734

    PubMed  CAS  Google Scholar 

  24. Noffz G, Qin Z, Kopf M, Blankenstein T (1998) Neutrophils but not eosinophils are involved in growth suppression of IL-4-secreting tumors. J Immunol 160:343–350

    Google Scholar 

  25. Ohno S, Ohno Y, Suzuki N, Kamei T, Koike K, Inagawa H, Kohchi C, Soma G-I, Inoue M (2004) Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res 24:3335–3342

    PubMed  Google Scholar 

  26. Rheinbach G (1893) Uber des verhalten der leukozyten bei malignen tumoren. Arch Klin Chir 46:486–562

    Google Scholar 

  27. Rothenberg M (1998) Eosinophilia. N Engl J Med 338:1592–1600

    Article  PubMed  CAS  Google Scholar 

  28. Ryman BE, Tyrrell DA (1980) Liposomes-bags of potential. Essays Biochem 18:49–98

    Google Scholar 

  29. Sassler AM, McClatchey KD, Wolf GT, Fisher SG (1995) Eosinophilic infiltration in advanced laryngeal squamous cell carcinoma. Veterans Administration Laryngeal Cooperative Study Group. Laryngoscope 105:413–416

    Article  PubMed  CAS  Google Scholar 

  30. Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohschneider L, Tang R, Pouillart P, Lidereau R (1994) Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 86:120–126

    Article  PubMed  CAS  Google Scholar 

  31. Shannon AM, Bouchier-Hayes DJ, Condron CM, Toomey D (2003) Tumor hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat Rev 29:297–307

    Article  PubMed  CAS  Google Scholar 

  32. Suzuki K, Morokata T, Morihira K, Sato I, Takizawa S, Kaneko M, Takahashi K, Shimizu Y (2006) In vitro and in vivo characterization of a novel CCR3 antagonist, YM-344031. Biochem Biophys Res Commun 339:1217–1223

    Article  PubMed  CAS  Google Scholar 

  33. Takikawa O, Oku T, Ito N, Ushio Y, Yamamoto N, Yoneda Y, Tsuji J, Sanchez-Bueno A, Verkhusha V, Yoshida R (1996) Multiple expression of Ly-6C and accumulation of a Ly-6C pre-mRNA in activated macrophages involved in rejection of an allografted tumor. Biochem Biophys Res Commun 226:247–253

    Article  PubMed  CAS  Google Scholar 

  34. Tashiro-Yamaji J, Einaga-Naito K, Kubota T, Yoshida R (2006) A novel receptor on allograft (H-2d)-induced macrophage (H-2b) toward an allogeneic major histocompatibility complex class I molecule, H-2Dd, in mice. Microbiol Immunol 50:105–116

    PubMed  CAS  Google Scholar 

  35. Tashiro-Yamaji J, Kubota T, Yoshida R (2006) Macrophage MHC receptor 2: a novel receptor on allograft (H-2DdKd)-induced macrophage (H-2DbKb) recognizing an MHC class I molecule, H-2Kd, in mice. Gene 384:1–8

    Article  PubMed  CAS  Google Scholar 

  36. Teoch SCB, Siow WY, Tan HT (2000) Severe eosinophilia in disseminated gastric carcinoma. Singapore Med J 41:232–234

    Google Scholar 

  37. Thepen T, Van Rooijen N, Kraal G (1989) Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J Exp Med 170:499–509

    Article  PubMed  CAS  Google Scholar 

  38. Ushio Y, Yamamoto N, Sanchez-Bueno A, Yoshida R (1996) Failure to reject an allografted tumor after elimination of macrophages in mice. Microbiol Immunol 40:489–498

    PubMed  CAS  Google Scholar 

  39. Van Driel WJ, Hogendoorn PCW, Jansen FW, Zwinderman AH, Trimbos JB (1996) Tumor-associated eosinophilic infiltrate of cervical carcinoma is indicative for a less effective immune response. Human Pathol 27:904–911

    Article  Google Scholar 

  40. Van Rooijen N, Kors N, Ende M, Dijkstra CD (1990) Depletion and repopulation of macrophages in spleen and liver of rat after intravenous treatment with liposome-encapsulated dichloromethylene diphosphonate. Cell Tissue Res 260:215–222

    Article  PubMed  Google Scholar 

  41. Van Rooijen N, Kors N, Kraal G (1989) Macrophage subset repopulation in the spleen: differential kinetics after liposome-mediated elimination. J Leukoc Biol 45:97–104

    PubMed  Google Scholar 

  42. Vaupel P, Kelleper DK, Hockel M (2001) Oxygen status of malignant tumors: pathogenesis of hypoxia and significance for tumor therapy. Semin Oncol 28:29–35

    Article  PubMed  CAS  Google Scholar 

  43. Venable JH, Coggeshall RA (1965) Simplified lead citrate stain for use in electron microscopy. J Cell Biol 25:407–408

    Article  PubMed  CAS  Google Scholar 

  44. Winn HJ (1961) Immune mechanisms in homotransplantations II. Quantitative assay of the immunologic activity of lymphoid cells stimulated by tumor homografts. J Immunol 86:228–239

    PubMed  CAS  Google Scholar 

  45. Yamamoto N, Einaga-Naito K, Kuriyama M, Kawada Y, Yoshida R (1998) Cellular basis of skin allograft rejection in mice: specific lysis of allogeneic skin components by non-T cells. Transplantation 65:818–825

    Article  PubMed  CAS  Google Scholar 

  46. Yoneda Y, Yoshida R (1998) The role of T cells in allografted tumor rejection: IFN-gamma released from T cells is essential for induction of effector macrophages in the rejection site. J Immunol 160:6012–6017

    PubMed  CAS  Google Scholar 

  47. Yoneda Y, Tashiro-Yamaji J, Kubota T, Yoshida R (2008) Two types of allograft-induced cytotoxic macrophage, one against allografts and the other against syngeneic or allogeneic tumor cells. Microbiol Immunol 52:347–354

    Article  CAS  Google Scholar 

  48. Yoshida R, Takikawa O, Oku T, Habara-Ohkubo A (1991) Mononuclear phagocytes: a major population of effector cells responsible for rejection of allografted tumor cells in mice. Proc Natl Acad Sci USA 88:1526–1530

    Article  PubMed  CAS  Google Scholar 

  49. Yoshida R, Oku T, Takikawa O, Einaga-Naito K, Yoneda Y, Hirota R, Kubota T (2000) Leukocyte integrin-dependent and antibody-independent cytotoxicity of macrophage against allografts. Microbiol Immunol 44:57–67

    PubMed  CAS  Google Scholar 

  50. Yoshida R, Yoneda Y, Kuriyama M, Kubota T (1999) IFN-gamma- and cell-to-cell contact-dependent cytotoxicity of allograft-induced macrophages against syngeneic tumor cells and cell lines: an application of allografting to cancer treatment. J Immunol 163:148–154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Ueno and Y. Fujioka for their skillful technical assistance. This work was supported in part by the Mori and Magari Memorial Research Funds from Osaka Medical College and by a grant-in-aid for scientific research from the Ministry of Education, Science, and Culture, Japan.

Conflict of interest statement

The authors have no financial conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryotaro Yoshida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, T., Ibata, M., Yu, Z. et al. Rejection of intradermally injected syngeneic tumor cells from mice by specific elimination of tumor-associated macrophages with liposome-encapsulated dichloromethylene diphosphonate, followed by induction of CD11b+/CCR3/Gr-1 cells cytotoxic against the tumor cells. Cancer Immunol Immunother 58, 2011–2023 (2009). https://doi.org/10.1007/s00262-009-0708-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0708-5

Keywords

Navigation