Skip to main content

Advertisement

Log in

Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Squamous cell carcinoma of the head and neck (SCCHN) cells can escape recognition by tumor antigen (TA)-specific cytotoxic T lymphocytes (CTL) by downregulation of antigen processing machinery (APM) components, such as the transporter associated with antigen processing (TAP)-1/2 heterodimer. APM component upregulation by interferon gamma (IFN-γ) restores SCCHN cell recognition and susceptibility to lysis by CTL, but the mechanism underlying TAP1/2 downregulation in SCCHN cells is not known. Because IFN-γ activates signal transducer and activator of transcription (STAT)-1, we investigated phosphorylated (p)-STAT1 as a mediator of low basal TAP1/2 expression in SCCHN cells. SCCHN cells were found to express basal total STAT1 but low to undetectable levels of activated STAT1. The association of increased pSTAT1 levels and APM components likely reflects a cause–effect relationship, since STAT1 knockdown significantly reduced both IFN-γ-mediated APM component expression and TA-specific CTL recognition of IFN-γ-treated SCCHN cells. On the other hand, since oncogenic pSTAT3 is overexpressed in SCCHN cells and was found to heterodimerize with pSTAT1, we also tested whether pSTAT3 and pSTAT1:pSTAT3 heterodimers inhibited IFN-γ-induced STAT1 activation and APM component expression. First, STAT3 activation or depletion did not affect basal or IFN-γ-induced expression of pSTAT1 and APM components or recognition of SCCHN cells by TA-specific CTL. Second, pSTAT1:pSTAT3 heterodimers did not interfere with IFN-γ-induced STAT1 binding to the TAP1 promoter or APM protein expression. These findings demonstrate that APM component downregulation is regulated primarily by an IFN-γ-pSTAT1-mediated signaling pathway, independent of oncogenic STAT3 overexpression in SCCHN cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cerundolo V et al (1990) Presentation of viral antigen controlled by a gene in the major histocompatibility complex. Nature 345(6274):449–452

    Article  PubMed  CAS  Google Scholar 

  2. Hosken NA, Bevan MJ (1990) Defective presentation of endogenous antigen by a cell line expressing class I molecules. Science 248(4953):367–370

    Article  PubMed  CAS  Google Scholar 

  3. Campoli M, Ferrone S (2008) HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene 27(45):5869–5885

    Article  PubMed  CAS  Google Scholar 

  4. Seliger B (2008) Different regulation of MHC class I antigen processing components in human tumors. J Immunotoxicol 5(4):361–367

    Article  PubMed  CAS  Google Scholar 

  5. Ferris RL, Hunt JL, Ferrone S (2005) Human leukocyte antigen (HLA) class I defects in head and neck cancer: molecular mechanisms and clinical significance. Immunol Res 33(2):113–133

    Article  PubMed  CAS  Google Scholar 

  6. Ferris RL, Whiteside TL, Ferrone S (2006) Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res 12(13):3890–3895

    Article  PubMed  CAS  Google Scholar 

  7. Lopez-Albaitero A et al (2006) Role of antigen-processing machinery in the in vitro resistance of squamous cell carcinoma of the head and neck cells to recognition by CTL. J Immunol 176(6):3402–3409

    PubMed  CAS  Google Scholar 

  8. Matsui M, Ikeda M, Akatsuka T (2001) High expression of HLA-A2 on an oral squamous cell carcinoma with down-regulated transporter for antigen presentation. Biochem Biophys Res Commun 280(4):1008–1014

    Article  PubMed  CAS  Google Scholar 

  9. Meissner M et al (2005) Defects in the human leukocyte antigen class I antigen processing machinery in head and neck squamous cell carcinoma: association with clinical outcome. Clin Cancer Res 11(7):2552–2560

    Article  PubMed  CAS  Google Scholar 

  10. Ogino T et al (2006) HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res 66(18):9281–9289

    Article  PubMed  CAS  Google Scholar 

  11. Ogino T et al (2003) Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin Cancer Res 9(11):4043–4051

    PubMed  CAS  Google Scholar 

  12. Gough DJ et al (2008) IFNgamma signaling-does it mean JAK-STAT? Cytokine Growth Factor Rev 19(5–6):383–394

    Article  PubMed  CAS  Google Scholar 

  13. Shuai K et al (1993) A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 261(5129):1744–1746

    Article  PubMed  CAS  Google Scholar 

  14. Rouyez MC et al (2005) IFN regulatory factor-2 cooperates with STAT1 to regulate transporter associated with antigen processing-1 promoter activity. J Immunol 174(7):3948–3958

    PubMed  CAS  Google Scholar 

  15. Min W, Pober JS, Johnson DR (1996) Kinetically coordinated induction of TAP1 and HLA class I by IFN-gamma: the rapid induction of TAP1 by IFN-gamma is mediated by Stat1 alpha. J Immunol 156(9):3174–3183

    PubMed  CAS  Google Scholar 

  16. Chatterjee-Kishore M et al (1998) Different requirements for signal transducer and activator of transcription 1 alpha and interferon regulatory factor 1 in the regulation of low molecular mass polypeptide 2 and transporter associated with antigen processing 1 gene expression. J Biol Chem 273(26):16177–16183

    Article  PubMed  CAS  Google Scholar 

  17. Ho HH, Ivashkiv LB (2006) Role of STAT3 in type I interferon responses. Negative regulation of STAT1-dependent inflammatory gene activation. J Biol Chem 281(20):14111–14118

    Article  PubMed  CAS  Google Scholar 

  18. Thyrell L et al (2007) Interferon alpha induces cell death through interference with interleukin 6 signaling and inhibition of STAT3 activity. Exp Cell Res 313(19):4015–4024

    Article  PubMed  CAS  Google Scholar 

  19. Murray PJ (2006) Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 6(4):379–386

    Article  PubMed  CAS  Google Scholar 

  20. Ito S et al (1999) Interleukin-10 inhibits expression of both interferon alpha- and interferon gamma- induced genes by suppressing tyrosine phosphorylation of STAT1. Blood 93(5):1456–1463

    PubMed  CAS  Google Scholar 

  21. Kurte M et al (2004) A synthetic peptide homologous to functional domain of human IL-10 down-regulates expression of MHC class I and transporter associated with antigen processing 1/2 in human melanoma cells. J Immunol 173(3):1731–1737

    PubMed  CAS  Google Scholar 

  22. Petersson M et al (1998) Constitutive IL-10 production accounts for the high NK sensitivity, low MHC class I expression, and poor transporter associated with antigen processing (TAP)-1/2 function in the prototype NK target YAC-1. J Immunol 161(5):2099–2105

    PubMed  CAS  Google Scholar 

  23. Salazar-Onfray F et al (1997) Down-regulation of the expression and function of the transporter associated with antigen processing in murine tumor cell lines expressing IL-10. J Immunol 159(7):3195–3202

    PubMed  CAS  Google Scholar 

  24. Terrazzano G et al (2000) HLA class I antigen downregulation by interleukin (IL)-10 is predominantly governed by NK-kappaB in the short term and by TAP1 + 2 in the long term. Tissue Antigens 55(4):326–332

    Article  PubMed  CAS  Google Scholar 

  25. Chen Z et al (1999) Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 5(6):1369–1379

    PubMed  CAS  Google Scholar 

  26. Woods KV et al (1998) Variable expression of cytokines in human head and neck squamous cell carcinoma cell lines and consistent expression in surgical specimens. Cancer Res 58(14):3132–3141

    PubMed  CAS  Google Scholar 

  27. Sriuranpong V et al (2003) Epidermal growth factor receptor-independent constitutive activation of STAT3 in head and neck squamous cell carcinoma is mediated by the autocrine/paracrine stimulation of the interleukin 6/gp130 cytokine system. Cancer Res 63(11):2948–2956

    PubMed  CAS  Google Scholar 

  28. Duffy SA et al (2008) Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer 113(4):750–757

    Article  PubMed  Google Scholar 

  29. Meyer F et al (2010) Serum prognostic markers in head and neck cancer. Clin Cancer Res 16(3):1008–1015

    Google Scholar 

  30. Heo DS et al (1989) Biology, cytogenetics, and sensitivity to immunological effector cells of new head and neck squamous cell carcinoma lines. Cancer Res 49(18):5167–5175

    PubMed  CAS  Google Scholar 

  31. Bandoh N et al (2005) Development and characterization of human constitutive proteasome and immunoproteasome subunit-specific monoclonal antibodies. Tissue Antigens 66(3):185–194

    Article  PubMed  CAS  Google Scholar 

  32. Ogino T et al (2003) Endoplasmic reticulum chaperone-specific monoclonal antibodies for flow cytometry and immunohistochemical staining. Tissue Antigens 62(5):385–393

    Article  PubMed  CAS  Google Scholar 

  33. Krutzik PO, Nolan GP (2003) Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytometry A 55(2):61–70

    Article  PubMed  Google Scholar 

  34. Andrade Filho PA et al (2010) Novel immunogenic HLA-A*0201-restricted epidermal growth factor receptor-specific T-cell epitope in head and neck cancer patients. J Immunother 33(1):83–91

    Article  PubMed  CAS  Google Scholar 

  35. Andrade Filho PA et al (2010) CD8+ T cell recognition of polymorphic wild-type sequence p53(65–73) peptides in squamous cell carcinoma of the head and neck. Cancer Immunol Immunother 59(10):1561–1568

    Article  PubMed  CAS  Google Scholar 

  36. Albers A et al (2005) Antitumor activity of human papillomavirus type 16 E7-specific T cells against virally infected squamous cell carcinoma of the head and neck. Cancer Res 65(23):11146–11155

    Article  PubMed  CAS  Google Scholar 

  37. Lathers DM, Young MR (2004) Increased aberrance of cytokine expression in plasma of patients with more advanced squamous cell carcinoma of the head and neck. Cytokine 25(5):220–228

    Article  PubMed  CAS  Google Scholar 

  38. Lathers DM, Achille NJ, Young MR (2003) Incomplete Th2 skewing of cytokines in plasma of patients with squamous cell carcinoma of the head and neck. Hum Immunol 64(12):1160–1166

    Article  PubMed  CAS  Google Scholar 

  39. Lui VW et al (2007) Antiproliferative mechanisms of a transcription factor decoy targeting signal transducer and activator of transcription (STAT) 3: the role of STAT1. Mol Pharmacol 71(5):1435–1443

    Article  PubMed  CAS  Google Scholar 

  40. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264(5155):95–98

    Article  PubMed  CAS  Google Scholar 

  41. Dovhey SE, Ghosh NS, Wright KL (2000) Loss of interferon-gamma inducibility of TAP1 and LMP2 in a renal cell carcinoma cell line. Cancer Res 60(20):5789–5796

    PubMed  CAS  Google Scholar 

  42. Hayashi T et al (2006) The mutation in the ATP-binding region of JAK1, identified in human uterine leiomyosarcomas, results in defective interferon-gamma inducibility of TAP1 and LMP2. Oncogene 25(29):4016–4026

    Article  PubMed  CAS  Google Scholar 

  43. Setiadi AF et al (2005) Identification of mechanisms underlying transporter associated with antigen processing deficiency in metastatic murine carcinomas. Cancer Res 65(16):7485–7492

    Article  PubMed  CAS  Google Scholar 

  44. Haque SJ et al (1997) Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function of JAK1. Proc Natl Acad Sci U S A 94(16):8563–8568

    Article  PubMed  CAS  Google Scholar 

  45. Baron M, Davignon JL (2008) Inhibition of IFN-gamma-induced STAT1 tyrosine phosphorylation by human CMV is mediated by SHP2. J Immunol 181(8):5530–5536

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank R. J. Binder and W. J. Storkus for critical reading of the manuscript and C. Visus for expert technical assistance. The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Ferris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibowitz, M.S., Andrade Filho, P.A., Ferrone, S. et al. Deficiency of activated STAT1 in head and neck cancer cells mediates TAP1-dependent escape from cytotoxic T lymphocytes. Cancer Immunol Immunother 60, 525–535 (2011). https://doi.org/10.1007/s00262-010-0961-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0961-7

Keywords

Navigation